若點P在等邊三角形ABC的BC邊的垂直平分線上,則使△PAB、△PAC、△PBC均為等腰三角形的P點個數(shù)有


  1. A.
    1個
  2. B.
    4個
  3. C.
    7個
  4. D.
    10個
B
分析:要判斷為等腰三角形,兩條邊相等即可.
解答:解:要使△PAB、△PAC、△PBC均為等腰三角形,
由于在線段BC的中垂線上,則△PBC一定是等腰三角形,
所以只需找出使△PAB、△PAC同時為等腰三角形的點P即可
如圖所示
故選B.
點評:熟練掌握等邊三角形的性質及等腰三角形的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知等邊△ABC和三角形內一點P,設點P到△ABC三邊的距離分別為h1、h2、h3,△ABC的高為h.
精英家教網(wǎng)
(1)請寫出h與h1、h2、h3的關系式,并說明理由;
(2)若點P在等邊△ABC的邊上,仍有上述關系嗎?
(3)若點P在三角形外,仍有上述關系嗎?若有,請你證明,若沒有,請你寫出它們新的關系式,并給予證明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、若點P在等邊三角形ABC的BC邊的垂直平分線上,則使△PAB、△PAC、△PBC均為等腰三角形的P點個數(shù)有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,M、N點分別在等邊三角形的BC、CA邊上,且BM=CN,AM、BN交于點Q.
(1)求證:∠BQM=60°;
(2)如圖②,如果點M、N分別移動到BC、CA的延長線上,其它條件不變,(1)中的結論是否仍然成立?若成立,給予證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若點P在等邊三角形ABC的BC邊的垂直平分線上,則使△PAB、△PAC、△PBC均為等腰三角形的P點個數(shù)有( 。
A.1個B.4個C.7個D.10個

查看答案和解析>>

同步練習冊答案