【題目】如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點(diǎn)A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為 .
【答案】(3π﹣ )cm2
【解析】解:作OH⊥DK于H,連接OK, ∵以AD為直徑的半圓,正好與對邊BC相切,
∴AD=2CD,
∴A'D=2CD,
∵∠C=90°,
∴∠DA'C=30°,
∴∠ODH=30°,
∴∠DOH=60°,
∴∠DOK=120°,
∴扇形ODK的面積為 =3πcm2 ,
∵∠ODH=∠OKH=30°,OD=3cm,
∴OH= cm,DH= cm;
∴DK=3 cm,
∴△ODK的面積為 cm2 ,
∴半圓還露在外面的部分(陰影部分)的面積是:(3π﹣ )cm2 .
所以答案是:(3π﹣ )cm2 .
【考點(diǎn)精析】掌握矩形的性質(zhì)和切線的性質(zhì)定理是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實(shí)數(shù)根,求m的取值范圍;寫出一個滿足條件的m的值,并求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正確的有( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-3,4),B(-4,1),C(-1,2).
(1)在圖中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)請直接寫出點(diǎn)C關(guān)于y軸的對稱點(diǎn)C'的坐標(biāo): ;
(3)△ABC的面積= ;
(4)在y軸上找一點(diǎn)P,使得△PAC周長最小,并求出△PAC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線l1:y=2x+1
(1)若將直線l1平移,使之經(jīng)過點(diǎn)(1,-5),求平移后直線的解析式;
(2)若直線l2:y=x+m與直線l1的交點(diǎn)在第二象限,求m的取值范圍;
(3)如圖,直線y=x+b與直線y=nx+2n(n≠0)的交點(diǎn)的橫坐標(biāo)為-5,求關(guān)于x的不等式組0<nx+2n<x+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上.下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com