【題目】如圖所示,的直徑,、為圓周上兩點,且,過點作,交的延長線于點.
(1)求證:為切線;
(2)填空:①當四邊形為菱形,則的度數為________;
②當時,四邊形的面積為________.
【答案】(1)見詳解;(2)①30°;②
【解析】
(1)根據題意可知,OD為半徑,只需證明OD⊥DC即可;
(2)①若四邊形AODE為菱形,可得出△AEO為等邊三角形,結合∠AEB=90°,BE∥CD,得出∠C=∠ABE即可;
②根據條件,可證明△DOB為等邊三角形,利用Rt△DOC和Rt△DON計算出△ODC的面積,以及菱形AODE的面積,相加即可得出四邊形ACDE的面積.
(1)∵,
∴OD⊥BE,
∵BE∥CD,
∴OD⊥DC,
∵OD為半徑,
∴CD為的切線;
(2)①∵四邊形AODE為菱形,
∴AE=OE=AO,
∴△AEO為等邊三角形,
∴∠EAO=60°,
∵∠AEB=90°,
∴∠ABE=30°,
∵BE∥CD,
∴∠C=∠ABE=30°,
故答案為:30°;
②作DN⊥AC交AC于N,
∵DB=DO=OB=AB,
∴△DOB為等邊三角形,
∴∠DOB=60°,
在Rt△DOC和Rt△DON中,OD=2,∠DOC=60°,
∵DC=2,DN=,∠C=30°,
∴,
∵AODE為菱形,
∴,
∴四邊形ACDE的面積=+=,
故答案為:.
科目:初中數學 來源: 題型:
【題目】甲乙兩位同學參加數學綜合素質測試,各項成績如下表:(單位:分)
數與代數 | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學生甲 | 93 | 93 | 89 | 90 |
學生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙同學成績的中位數;
(2)如果數與代數,空間與圖形,統(tǒng)計與概率,綜合與實踐的成績按4:3:1:2計算,那么甲、乙同學的數學綜合素質成績分別為多少分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與函數的圖象的一個交點為.
(1)求,,的值;
(2)將線段向右平移得到對應線段,當點落在函數的圖象上時,求線段掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數(是常數,)的自變量與函數值的部分對應值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當時,與其對應的函數值.有下列結論:①;②和3是關于的方程的兩個根;③.其中,正確結論的個數是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:AB為⊙O的直徑,點C,D在⊙O上,連接AD,OC.
(1)如圖1,求證:AD∥OC;
(2)如圖2,過點C作CE⊥AB于點E,求證:AD=2OE;
(3)如圖3,在(2)的條件下,點F在OC上,且OF=BE,連接DF并延長交⊙O于點G,過點G作CH⊥AD于點H,連接CH,若∠CFG=135°,CE=3,求CH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線過點,與軸交于點,連接將沿所在的直線翻折,得到連接.
(1)若求拋物線的解析式.
(2)如圖1,設的面積為的面積為,若,求的值.
(3)如圖2,若點是半徑為的上一動點,連接當點運動到某一位置時,的值最大,請求出這個最大值,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB=45°,當將遮陽傘撐開至OE位置時,測得∠OEC=30°,且此時遮陽傘邊沿上升的豎直高度BC為20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,,.
(1)如圖1,折疊使點落在邊上的點處,折痕交、分別于點、,若,則________.
(2)如圖2,折疊使點落在邊上的點處,折痕交、分別于點、.若,求證:四邊形是菱形;
(3)在(1)(2)的條件下,線段上是否存在點,使得和相似?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com