【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為不稱職,當 時為基本稱職,當 時為稱職,當 時為優(yōu)秀”.根據(jù)以上信息,解答下列問題:

(1)補全折線統(tǒng)計圖和扇形統(tǒng)計圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎,月銷售額獎勵標準應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.

【答案】(1)補全統(tǒng)計圖如圖見解析;(2) “稱職的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;優(yōu)秀的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;(3)月銷售額獎勵標準應(yīng)定為22萬元.

【解析】

1 根據(jù)稱職的人數(shù)及其所占百分比求得總?cè)藬?shù), 據(jù)此求得不稱職、 基本稱職和優(yōu)秀的百分比, 再求出優(yōu)秀的總?cè)藬?shù), 從而得出銷售 26 萬元的人數(shù), 據(jù)此即可補全圖形

2 根據(jù)中位數(shù)和眾數(shù)的定義求解可得;

3 根據(jù)中位數(shù)的意義求得稱職和優(yōu)秀的中位數(shù)即可得出符合要求的數(shù)據(jù)

1)依題可得:
“不稱職”人數(shù)為:2+2=4(人),
“基本稱職”人數(shù)為:2+3+3+2=10(人),
“稱職”人數(shù)為:4+5+4+3+4=20(人),
∴總?cè)藬?shù)為:20÷50%=40(人),
∴不稱職”百分比:a=4÷40=10%,
“基本稱職”百分比:b=10÷40=25%,
“優(yōu)秀”百分比:d=1-10%-25%-50%=15%,
∴“優(yōu)秀”人數(shù)為:40×15%=6(人),
∴得26分的人數(shù)為:6-2-1-1=2(人),
補全統(tǒng)計圖如圖所示:

2)由折線統(tǒng)計圖可知:“稱職”20萬4人,215人,224人,233人,244人,
“優(yōu)秀”25萬2人,262人,271人,281人;
“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;
“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;
3)由(2)知月銷售額獎勵標準應(yīng)定為22.
∵“稱職”和“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:22萬,
∴要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應(yīng)定為22萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點OAC上,以OA為半徑的OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8,OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,頂點為(,)的拋物線交y軸于點C0,﹣2),交x軸于點A,B(點A在點B的左側(cè)).P點是y軸上一動點,Q點是拋物線上一動點.

1)求拋物線的解析式;

2P點運動到何位置時,△POA與△ABC相似?并求出此時P點的坐標;

3)當以AB、P、Q四點為頂點的四邊形為平行四邊形時,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的半徑,,,上任意一點,的延長線交于點,過點的切線交的延長線于點

1)求證:;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以為邊在的另一側(cè)作,點為射線上任意一點,在射線上截取,連接、

1)如圖1,當點落在線段的延長線上時,的度數(shù)為__________

2)如圖2,當點落在線段(不含邊界)上時,交于點,請問(1)中的結(jié)論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;

3)在(2)的條件下,若,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y3x與反比例函數(shù)y(k0)的圖象交于A,B兩點,點P在以C(30)為圓心,1為半徑的⊙C上,QAP的中點,已知OQ長的最大值為2,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線yax2+bx+c與直線lykx+mk0)交于A10),B兩點,與y軸交于C0,3),對稱軸為直線x2

1)請直接寫出該拋物線的解析式;

2)設(shè)直線l與拋物線的對稱軸的交點為F,在對稱軸右側(cè)的拋物線上有一點G,若,且SBAG6,求點G的坐標;

3)若在直線上有且只有一點P,使∠APB90°,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將正方形ABCD繞點A順時針旋轉(zhuǎn)角度α0°<α90°)得到正方形ABCD′.

1)如圖1BC′與AC交于點M,CD′與AD所在直線交于點N,若MNBD′,求α;

2)如圖2,CB′與CD交于點Q,延長CB′與BC交于點P,當α30°時.

求∠DAQ的度數(shù);

AB6,求PQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當?shù)貢r間2019415日下午,法國巴黎圣母院發(fā)生火災(zāi),大火燒毀了巴黎圣母院后塔的塔頂.燒毀前,為測量此塔頂的高度,在地面選取了與塔底共線的兩點、,的同側(cè),在處測量塔頂的仰角為27°,在處測量塔頂的仰角為45°,的距離是89.5米.設(shè)的長為米,則下列關(guān)系式正確的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案