【題目】某班選舉班干部,全班有40名同學(xué)都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,40.老師規(guī)定:同意某同學(xué)當選的記“1”,不同意(含棄權(quán))的記“0”

如果令

其中i1,2,40;j12,40.則a1,1a12+a21a2,2+a3,1a32+…+a40,1a40,2表示的實際意義是(  )

A. 同意第1號或者第2號同學(xué)當選的人數(shù)

B. 同時同意第1號和第2號同學(xué)當選的人數(shù)

C. 不同意第1號或者第2號同學(xué)當選的人數(shù)

D. 不同意第1號和第2號同學(xué)當選的人數(shù)

【答案】B

【解析】

先寫出同意第1號同學(xué)當選的同學(xué),再寫出同意第2號同學(xué)當選的同學(xué),那么同時同意12號同學(xué)當選的人數(shù)是他們對應(yīng)相乘再相加.

1,23,……,40名同學(xué)是否同意第1號同學(xué)當選依次由a1,1a2,1a3,1,…,a40,1來確定,

是否同意第2號同學(xué)當選依次由a1,2a2,2a3,2…,a40,2來確定,

a1,1a12+a2,1a2,2+a3,1a3,2++a40,1a402表示的實際意義是同時同意第1號和第2號同學(xué)當選的人數(shù),

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角△ABC中,∠ABC=90°,BC為圓O的直徑,D為圓O與斜邊AC的交點,DE為圓O的切線,DEABF,且CE⊥DE.

(1)求證:CA平分∠ECB;

(2)若DE=3,CE=4,求AB的長;

(3)記△BCD的面積為S1,△CDE的面積為S2,若S1:S2=3:2.求sin∠AFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機抽取了部分學(xué)生進行問卷調(diào)查(每人必須且只選中其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:

1)求m,n的值.

2)補全條形統(tǒng)計圖.

3)該校共有1200名學(xué)生,試估計全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,潘老師給出如下定義:如果一個三角形有一邊上的高線等于這條邊的一半,那么稱這個三角形為垂美三角形,這條邊稱為這個三角形的垂美邊”.

概念理解:

(1)如圖①,已知∠A90°ABAC,請證明等腰RtABC一定是垂美三角形”.

探索運用:

(2)已知等腰△ABC垂美三角形,請求出頂角的度數(shù).

能力提升:

(3)如圖②,在直角坐標系中,點Ax軸正半軸上動點,在反比例函數(shù)的圖象上是否存在點B,使△OAB垂美三角形,且OA,OB均為垂美邊,若存在,請求出點B的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達到121個,求20182020年寢室數(shù)量的年平均增長率;

(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學(xué)家陳景潤哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)都表示為兩個素數(shù)的和”.如20=3+17.

(1)從7、11、19、23這4個素數(shù)中隨機抽取一個,則抽到的數(shù)是7的概率是 ;

(2)從7、11、19、23這4個素數(shù)中隨機抽取1個數(shù),再從余下的3個數(shù)中隨機抽取1個數(shù),用畫樹狀圖或列表的方法,求抽到的兩個素數(shù)之和等于30的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標有數(shù)字,,,如圖,正方形頂點處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.如:若從圖起跳,第一次擲得,就順時針連續(xù)跳個邊長,落到圈;若第二次擲得,就從開始順時針連續(xù)跳個邊長,落到圈;設(shè)游戲者從圈起跳.

)嘉嘉隨機擲一次骰子,求落回到圈的概率

淇淇隨機擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?

查看答案和解析>>

同步練習(xí)冊答案