【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)D,EAC同側(cè),∠A=∠C=90°,BD⊥BE,AD=BC

(1)求證:AC=AD+CE;

(2)AD=3,CE=5,點(diǎn)P為線段AB上的動(dòng)點(diǎn),連接DP,作PQ⊥DP,交直線BE于點(diǎn)Q;

(i)當(dāng)點(diǎn)PAB兩點(diǎn)不重合時(shí),求的值;

(ii)當(dāng)點(diǎn)PA點(diǎn)運(yùn)動(dòng)到AC的中點(diǎn)時(shí),求線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

【答案】(1)證明見解析;(2)(i);(ii)線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)長為.

【解析】

(1)根據(jù)同角的余角相等求出∠1=∠E,再利用角角邊證明△ABD△CEB全等,根據(jù)全等三角形對應(yīng)邊相等可得AB=CE,然后根據(jù)AC=AB+BC整理即可得證;

(2)(i)過點(diǎn)QQFBCF,根據(jù)△BFQ和△BCE相似可得,然后求出QF=BF,再根據(jù)△ADP和△FPQ相似可得,然后整理得到(AP-BF)(5-AP)=0,從而求出AP=BF,最后利用相似三角形對應(yīng)邊成比例可得,從而得解;

(ii)判斷出DQ的中點(diǎn)的路徑為△BDQ的中位線MN.求出QF、BF的長度,利用勾股定理求出BQ的長度,再根據(jù)中位線性質(zhì)求出MN的長度,即所求之路徑長.

(1)如圖,∵BDBE,∴∠1+2=180°90°=90°

∠C=90°,∴∠2+∠E=180°90°=90°∴∠1=∠E,

△ABD△CEB中,∠1=∠E,∠A=∠C=90°,AD=BC,

∴△ABD≌△CEB(AAS),∴AB=CE,

∴AC=AB+BC=AD+CE;

(2)(i)如圖,過點(diǎn)QQFBCF,則△BFQ∽△BCE,

,

,

QF=BF,

DPPQ,

∴∠ADP+FPQ=180°-90°=90°,

∵∠FPQ+PQF=180°-90°=90°,

∴∠ADP=FPQ

又∵∠A=PFQ=90°,

∴△ADP∽△FPQ,

,

5AP-AP2+APBF=3BF,

整理得,(AP-BF)(AP-5)=0

∵點(diǎn)PA,B兩點(diǎn)不重合,

AP5

AP=BF

由△ADP∽△FPQ得,,

;

(ii)線段DQ的中點(diǎn)所經(jīng)過的路徑(線段)就是△BDQ的中位線MN,

(2)(i)可知,QF=AP,

當(dāng)點(diǎn)P運(yùn)動(dòng)至AC中點(diǎn)時(shí),AP=4,∴QF=,

BF=QF×=4,

Rt△BFQ中,根據(jù)勾股定理得:BQ==,

MN=BQ=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y+x的圖象與性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.

(1)函數(shù)y+x的自變量x的取值范圍是   

(2)下表是yx的幾組對應(yīng)值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(23),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)   

(5)小明發(fā)現(xiàn),該函數(shù)的圖象關(guān)于點(diǎn)(   ,   )成中心對稱;

該函數(shù)的圖象與一條垂直于x軸的直線無交點(diǎn),則這條直線為   ;

直線ym與該函數(shù)的圖象無交點(diǎn),則m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線yx0)上,點(diǎn)B在雙曲線yx0)上,且ABx軸,BCy軸,點(diǎn)Cx軸上,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,如圖邊長為2的正方形ABCD中,∠MAN的兩邊分別交BC、CD邊于M、N兩點(diǎn), 且∠MAN=45.

(1)求證:MN=BM+DN.

(2)若AM、AN交對角線BD于E、F兩點(diǎn),設(shè)BF=y,DE=x,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)OAD上一動(dòng)點(diǎn)(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.

1)求證:△ODM∽△MCN

2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);

3)在點(diǎn)O運(yùn)動(dòng)的過程中,設(shè)△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,把RtABCRtDEF按圖1擺放,(點(diǎn)CE點(diǎn)重合),點(diǎn)B、CE、F始終在同一條直線上,∠ACB=EDF=90°,∠DEF=45°,AC=8,BC=6EF=10,如圖2,DEF從圖1出發(fā),以每秒1個(gè)單位的速度沿CBABC勻速運(yùn)動(dòng),同時(shí),點(diǎn)PA出發(fā),沿AB以每秒1個(gè)單位向點(diǎn)B勻速移動(dòng),ACDEF的直角邊相交于Q,當(dāng)P到達(dá)終點(diǎn)B時(shí),DEF同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)移動(dòng)的時(shí)間為ts).解答下列問題:

(1)DEF在平移的過程中,當(dāng)點(diǎn)DRtABC的邊AC上時(shí),求t的值;

(2)在移動(dòng)過程中,是否存在APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.

(3)在移動(dòng)過程中,當(dāng)0t≤5時(shí),連接PE,是否存在PQE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cy軸交于點(diǎn)A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對稱軸左側(cè),BC=6.

(1)求此拋物線的解析式.

(2)點(diǎn)Px軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種市場均衡模型是用一次函數(shù)和二次函數(shù)來刻化的:根據(jù)市場調(diào)查,某種商品的市場需求量y1(噸)與單價(jià)x(百元)之間的關(guān)系可看作是二次函數(shù)y1=4﹣x2,該商品的市場供應(yīng)量y2(噸)與單價(jià)x(百元)之間的關(guān)系可看作是一次函數(shù)y2=4x﹣1.

(1)當(dāng)需求量等于供應(yīng)量時(shí),市場達(dá)到均衡.此時(shí)的單價(jià)x(百元)稱為均衡價(jià)格,需求量(供應(yīng)量)稱為均衡數(shù)量.求所述市場均衡模型的均衡價(jià)格和均衡數(shù)量.

(2)當(dāng)該商品單價(jià)為50元時(shí),此時(shí)市場供應(yīng)量與需求量相差多少噸?

(3)根據(jù)以上信息分析,當(dāng)該商品供不應(yīng)求供大于求時(shí),該商品單價(jià)分別會(huì)在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y的圖象在第二象限內(nèi),點(diǎn)A是圖象上的任意一點(diǎn),AMx軸于點(diǎn)M,O是原點(diǎn).若SAOM=3,求該反比例函數(shù)的解析式,并寫出自變量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案