【題目】如圖示意圖,A點的坐標為(2,2),點C在線段OA上運動(點C不與O、A重合),過點C作CD⊥x軸于D,再以CD為一邊在CD右側畫正方形CDEF.連接AF并延長交x軸于B,連接OF.若△BEF與△OEF相似,則點B的坐標是________.
【答案】(1,0)(3,0)(6,0)
【解析】
設,依題意要使△BEF∽△OFE,則要或
即分BE=2t或兩種情況解答.當BE=2t時,BO=4t,根據(jù)上述的線段比求出t值;當時也要細分兩種情況:當B在E的右側以及當B在E的左側時OB的取值,利用線段比求出t值.
設
∵A(2,2),
∴
∴CD=OD=DE=EF=t,
∵CF∥OB,
∴△ACF∽△AOB,
∴
∴
要使△BEF與△OFE相似,
∵
∴只要或
即:BE=2t或,
①當BE=2t時,BO=4t,
∴
∴t1=0(舍去)或,
∴B(6,0).
②當時,
(ⅰ)當B在E的左側時,
∴
∴t1=0(舍去)或
∴B(1,0).
(ⅱ)當B在E的右側時,
∴
∴t1=0(舍去)或
∴B(3,0).
綜上,B(1,0)(3,0)(6,0).
故答案為:(1,0)(3,0)(6,0).
科目:初中數(shù)學 來源: 題型:
【題目】在南部沿海某氣象站A測得一熱帶風暴從A的南偏東30°的方向迎著氣象站襲來,已知該風暴速度為每小時20千米,風暴周圍50千米范圍內將受到影響,若該風暴不改變速度與方向,問氣象站正南方60千米處的沿海城市B是否會受這次風暴的影響?若不受影響,請說明理由;若受影響,請求出受影響的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BCA=90°,AC=BC,點D是BC的中點,點F在線段AD上,DF=CD,BF交CA于E點,過點A作DA的垂線交CF的延長線于點G,下列結論:①CF2=EFBF;②AG=2DC;③AE=EF;④AFEC=EFEB.其中正確的結論有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角三角形紙片ABC 中,∠C=90°,把紙片沿EF 對折后,點A恰好落在BC 上的點D處,點CE=I,AC=4,則下列結論一定正確的個數(shù)是( )
①∠CDE= ∠DFB ;②BD > CE ;③BC= CD ;④△DCE 與△BDF 的周長相等.
A. 1個 B. 2個 C. 3個 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓O與AD,AC分別交于點E,F(xiàn),且∠ACB=∠DCE.
(1)求證:CE是圓O所在圓的切線;
(2)若tan∠BAC=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點,AC與DE交于點F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形 ABCD 的邊長為 10,E 在 BC 邊上運動,取 DE 的中點 G,EG 繞點 E 順時針旋轉90°得 EF,問 CE 長為多少時,A、C、F 三點在一條直線上( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是關于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;
(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;
(3)若k=﹣2,λ=,試求λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com