【題目】如圖,正方形的邊長為,點,點同時從點出發(fā),速度均2cm/s,點沿向點運動,點沿向點運動,則△的面積與運動時間之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
【答案】C
【解析】
分①0<t≤1;②1<t≤2;兩種情況分別求出S與t之間的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象與性質(zhì)求解即可.
分兩種情況:
①0<t≤1時,P在邊AD上,Q在AB上.
∵AP=2t,AQ=2t,∴SAPAQ2t2t=2t2,所以A、B錯誤;
②1<t≤2,P在邊CD上,Q在邊BC上,如圖,∵DP=2(t-1)=2t-2,BQ=2(t-1)=2t-2,QC=PC=4-2t,∴S=S正方形ABCD-S△ABQ―S△ADP―S△CPQ=2×2-×2×(2t-2)-×2×(2t-2)-×(4-2t)2=-2t2+4t=,所以D錯誤.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.
(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.
①分別求函數(shù)y1、y2的表達式;
②直接寫出使y1>y2>0成立的x的范圍;
(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;
(3)設m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB的頂點坐標分別為O(0,0)、A(3,2)、B(2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應點D、E、F.
(1)在圖中畫出△DEF;
(2)點E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個圖形有1個正三角形,第二個圖形有5個正三角形,第三個圖形有12個正三角形,…,按此規(guī)律排列下去,第六個圖形中正三角形的個數(shù)是( )
A. 35 B. 41 C. 45 D. 51
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△DCE和△ABC是一大一小兩塊等腰三角尺,∠DCE=∠ACB=90°,AC=BC,EC=DC.
(1)如圖1所示,若∠DBE=28°,試求∠AEB的大;
(2)若將△DCE繞C點順時針旋轉(zhuǎn)到圖2所示,∠DBE=n°,試求∠AEB的大。ㄓ煤琻的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為,點是邊上的動點,從點開始沿向運動. 以為邊,在的上方作正方形,交于點,連接、.請?zhí)骄浚?/span>
(1)線段與是否相等?請說明理由.
(2)若設,,當取何值時,最大?最大值是多少?
(3)當點運動到的何位置時,△∽△?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△CDE都為等腰直角三角形,∠ACB=∠ECD=90°.
探究:如圖①,當點A在邊EC上,點C在線段BD上時,連結(jié)BE、AD.求證:BE=AD,BE⊥AD.
拓展:如圖②,當點A在邊DE上時,AB、CE交于點F,連結(jié)BE.若AE=2,AD=4,則的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C、D是以AB為直徑的⊙O上的點,,弦CD交AB于點E.
(1)當PB是⊙O的切線時,求證:∠PBD=∠DAB;
(2)求證:BC2﹣CE2=CEDE;
(3)已知OA=4,E是半徑OA的中點,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,下列結(jié)論:
①兩函數(shù)圖象的交點坐標為A(2,2);
②當x>2時,y2>y1;
③直線x=1分別與兩個函數(shù)圖象相交于B,C兩點,則線段BC的長為3;
④當x逐漸增大時,y1的值隨x的增大而增大,y2的值隨x的增大而減少,其中正確的是( )
A. ①② B. ①③ C. ②④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com