【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點 A 沿逆時針方向旋轉(zhuǎn) 90°得到AD,邊 BC 繞點 B 沿順時針方向旋轉(zhuǎn) 90°得到 BE,作 DMAB 于點 MENAB N, AB10,EN4, DM__________

【答案】6

【解析】

過點CCFAB于點F,由旋轉(zhuǎn)的性質(zhì)可得AD=ACBE=BC,利用一線三等角證得∠D=CAF,從而可判定△DAM≌△ACFAAS),則DM=AF.同理可證,△BFC≌△ENBAAS),則BF=EN=4,再由AB=10,可得AF,即DM的值.

過點CCFAB于點F,如圖所示:

則旋轉(zhuǎn)的性質(zhì)得:
AD=AC,BE=BC,
DMAB于點M,ENAB于點N,CFAB于點F,
∴∠AMD=AFC=BFC=BNE=90°,
∴∠D+DAM=90°,
∵∠CAD=90°
∴∠CAF+DAM=90°,
∴∠D=CAF
∴在△DAM和△ACF中,

,
∴△DAM≌△ACFAAS),
DM=AF
同理可證,△BFC≌△ENBAAS),
BF=EN=4,
AB=10
AF=6,
DM=6
故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A10),與y軸的交點B在(0,2)和(0,1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結(jié)論的選項是( 。

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點B的坐標為,將直線沿y軸向上平移3個單位長度后,恰好經(jīng)過B、C兩點.

1)求k的值和點C的坐標;

2)求拋物線的表達式及頂點D的坐標;

3)已知點E是點D關(guān)于原點的對稱點,若拋物線與線段恰有一個公共點,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線頂點C1,4),且與y軸交于點D0,3).

1)求該拋物線的解析式及其與x軸的交點AB的坐標;

2)將直線AC繞點A順時針旋轉(zhuǎn)45°后得到直線AE,與拋物線的另一個交點為E,請求出點E的坐標;

3)如圖2,點P是該拋物線上位于第一象限的點,線段APBD于點M、交y軸于點N,△BMP和△DMN的面積分別為S1,S2,求S1S2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, BC交⊙O于點DE的中點,連接AEBC于點F,∠ACB =2EAB

1)求證:AC是⊙O的切線;

2)若,,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組鄰邊均和一條對角線相等的四邊形叫做鄰和四邊形.

1)如圖1,四邊形ABCD中,∠ABC70°,∠BAC40°,∠ACD=∠ADC80°,求證:四邊形ABCD是鄰和四邊形.

2)如圖2,是由50個小正三角形組成的網(wǎng)格,每個小正三角形的頂點稱為格點,已知A,B,C三點的位置如圖,請在網(wǎng)格圖中標出所有的格點D,使得以A,BC,D為頂點的四邊形為鄰和四邊形.

3)如圖3,△ABC中,∠ABC90°,AB4,BC4,若存在一點D,使四邊形ABCD是鄰和四邊形,求鄰和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,點,點,點從點出發(fā),沿1個單位每秒的速度勻速運動,同時點從點出發(fā),沿軸正方向以2個單位每秒的速度勻速運動.,交于點,交軸于點.當(dāng)點到達點時,兩點同時停止運動,設(shè)運動的時間為秒.在整個運動過程中,設(shè)的重疊部分的面積為

1)求當(dāng)為何值時,點與點、在同一直線上;

2)求關(guān)于的函數(shù)關(guān)系式;

3)在圖(3)中畫出關(guān)于的函數(shù)圖象,直接寫出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2BE平分∠DBCCD于點E,將BCE繞點C順時針旋轉(zhuǎn)90°得到DCF,延長BEDFG,則BF的長為_____

查看答案和解析>>

同步練習(xí)冊答案