【題目】一輛客車與一輛貨車分別從相距的甲、乙兩地同時相向出發(fā),勻速而行,客車到達(dá)乙地后停留,然后按原路原速返回,最終客車比貨車晚到達(dá)甲地.客車與貨車距各自出發(fā)地的距離與所用的時間的關(guān)系如圖所示,下列說法錯誤的是( )
A.客車返回的速度為B.貨車的速度為
C.出發(fā)時,客車與貨車相距D.出發(fā)時,客車與貨車距各自出發(fā)地的距離相等
【答案】C
【解析】
觀察圖像可得,客車一共行駛7小時,到達(dá)乙地后停留一小時,所以一共行駛6小時,客車比貨車晚到達(dá)甲地,所以貨車行駛6小時,據(jù)此可算出兩車的行駛速度,即可對A、B選項進行判斷,對于C選項,分別求出出發(fā)時,客車與貨車與出發(fā)地的距離,再用420減去這兩個距離即為此時兩車之間的距離,出發(fā)時,客車在返回甲地,與甲地的距離為:420-140×(-4)=km,此時貨車距乙地的距離為:70×km,故選項D正確.
A.客車一共行駛7小時,到達(dá)乙地后停留一小時,所以一共行駛6小時,因為客車是原路原速返回,所以速度為420÷(6÷2)=,故A選項正確;
B. 客車比貨車晚到達(dá)甲地,所以貨車行駛6小時,速度為420÷6=,故B選項正確;
C. 出發(fā)時,客車與甲地的距離為:140×=210km,出發(fā)時,貨車與乙地的距離為:70×=105km,兩車之間的距離為:420-210-105=105km,故C選項錯誤;
D. 出發(fā)時,客車在返回甲地,與甲地的距離為:420-140×(-4)=km,此時貨車距乙地的距離為:70×km,所以出發(fā)時,客車與貨車距各自出發(fā)地的距離相等,故D選項正確
故選:D
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠(yuǎn)學(xué)校的一段全長為1200 米的道路進行了改造,鋪設(shè)草油路面.鋪設(shè)400 米后,為了盡快完成道路改造,后來每天的工作效率比原計劃提高25%,結(jié)果共用13天完成道路改造任務(wù).
(1)求原計劃每天鋪設(shè)路面多少米;
(2)若承包商原來每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一位護士統(tǒng)計一位病人的體溫變化圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)病人的最高體溫是達(dá)多少?
(2)什么時間體溫升得最快?
(3)如果你是護士,你想對病人說____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點D、E,DE經(jīng)過點F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;④BF=CF.其中正確的是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在平行四邊形紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,判斷四邊形AEE'D的形狀;
(2)如圖②,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.
①求證:四邊形AFF'D是菱形;
②求四邊形AFF'D的兩條對角線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E為菱形ABCD的邊CD上任意點,將CE繞點E旋轉(zhuǎn)一定角度后與AD平行.
(1)如圖,若CE旋轉(zhuǎn)后得到PE和NE,試判斷下列結(jié)論是否成立?
①BD平分AN, ;
②BD⊥AP, (填寫“成立”或“不成立”);
(2)證明(1)中你的判斷.
(3)若∠ABC=60°,AB=BM=+1,請直接寫出CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com