如圖,反向延長一線段BA到C,使,延長BA到D,使,且DC=6cm,求線段DC的中點E和A點之間的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作CD⊥AB于點D.
(1)當(dāng)點E為DB上任意一點(點D、B除外)時,連接CE并延長交⊙O于點F,AF與CD的延長線交于點G(如圖①).
求證:AC2=AG•AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點E為AD上任意一點(點A、D除外)時,連接CE并延長交⊙O于點F,連接AF并延長與CD的延長線在圓外交于點G,CG與⊙O相交于點H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF•GA=GH•GC.請你幫李明給出證明.
(3)當(dāng)點E為AB的延長線上或反向延長線上任意一點(點A、B除外)時,如圖③、④所示,還有許多結(jié)論成立.請你根據(jù)圖③或圖④再寫出兩個類似問題(1)、(2)的結(jié)論(兩角、兩弧、精英家教網(wǎng)兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖,反向延長一線段BA到C,使,延長BA到D,使,且DC=6cm,求線段DC的中點E和A點之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作CD⊥AB于點D.
(1)當(dāng)點E為DB上任意一點(點D、B除外)時,連接CE并延長交⊙O于點F,AF與CD的延長線交于點G(如圖①).
求證:AC2=AG•AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點E為AD上任意一點(點A、D除外)時,連接CE并延長交⊙O于點F,連接AF并延長與CD的延長線在圓外交于點G,CG與⊙O相交于點H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF•GA=GH•GC.請你幫李明給出證明.
(3)當(dāng)點E為AB的延長線上或反向延長線上任意一點(點A、B除外)時,如圖③、④所示,還有許多結(jié)論成立.請你根據(jù)圖③或圖④再寫出兩個類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省岳陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作CD⊥AB于點D.
(1)當(dāng)點E為DB上任意一點(點D、B除外)時,連接CE并延長交⊙O于點F,AF與CD的延長線交于點G(如圖①).
求證:AC2=AG•AF.
(2)李明證明(1)的結(jié)論后,又作了以下探究:當(dāng)點E為AD上任意一點(點A、D除外)時,連接CE并延長交⊙O于點F,連接AF并延長與CD的延長線在圓外交于點G,CG與⊙O相交于點H(如圖②).連接FH后,他驚奇地發(fā)現(xiàn)∠GFH=∠AFC.根據(jù)這一條件,可證GF•GA=GH•GC.請你幫李明給出證明.
(3)當(dāng)點E為AB的延長線上或反向延長線上任意一點(點A、B除外)時,如圖③、④所示,還有許多結(jié)論成立.請你根據(jù)圖③或圖④再寫出兩個類似問題(1)、(2)的結(jié)論(兩角、兩弧、兩線段相等或不相等的關(guān)系除外)(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案