精英家教網 > 初中數學 > 題目詳情
已知,如圖,D為△ABC內一點連接BD、AD,以BC為邊在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、CE交于E,連接DE.
(1)求證:
(2)求證:△DBE∽△ABC.
在△CBE和△ABD中,
∵∠CBE=∠ABD, ∠BCE=∠BAD,
∴△CBE∽△ABD.
.
.
又∵∠CBE=∠ABD,
∴∠CBE+∠DBC=∠ABD+∠DBC.
即∠DBE=∠ABC.
∴△DBE∽△ABC.
(1)根據題意可知∠CBE=∠ABD,∠BCE=∠BAD可得出△CBE∽△ABD,再根據相似三角形的對應邊成比例即可得出結論;
(2)由(1)知,再由∠CBE=∠ABD可知∠DBE=∠ABC,故可得出△DBE∽△ABC.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC, AB = CD,EAD的中點,AD=4,BC=6,點PBC邊上的動點(不與點B重合),PEBD相交于點O,設PB的長為x.

(1) 當P點在BC邊上運動時,求證:△BOP∽△DOE.
(2) 當x = (   )時,四邊形ABPE是平行四邊形;當x = (   )時,四邊形ABPE是直角梯形;
(3)當PBC上運動的過程中,四邊形ABPE會不會是等腰梯形?試說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中,E為AD的中點.已知△DEF的面積為S,則△DCF的面積為              

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,使△AOB∽△COD,則還需添加一個條件是:    ▲     (寫一個即可)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,BD是⊙O的直徑, A、C是⊙O上的兩點,且AB=AC,AD與BC的延長線交于點E.
(1)求證:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=8,BC=7,AC=6,有一動點P從A沿AB移動到B,移動速度為2單位/秒,有一動點Q從C沿CA移動到A,移動速度為l單位/秒,問兩動點同時出發(fā),移動多少時間時,△PQA與△ABC相似.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

扇形AOB中,OA、OB是半徑,且∠AOB=90°,OA=6,點C是AB上異于A、B的動點。過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE.
(1)求證:OG=CH;
(2)當點C在AB上運動時,線段DE的長是否為定值?若為定值,請求出該值;否則,請說明理由;
(3)設CH,CD,求之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,王華晚上由路燈A下的B處走到C處時,測得影子CD的長為1米,繼續(xù)往前走3米到達E處時,測得影子EF的長為2米,已知王華的身高是1.5米,那么路燈A的高度AB等于(    )
A.4.5米  B.6米C.7.2米 D.8米

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若兩個相似多邊形的面積之比為1∶3,則對應邊的比為(   )
A.1∶3B.3∶1C.D.

查看答案和解析>>

同步練習冊答案