精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖△ABC中,BD,CE分別是AC,AB邊上的高,BQAC,點FCE的延長線上,CFAB,求證:AFAQ.

【答案】見解析.

【解析】

首先證明出∠ABD=ACE,再有條件BQ=AC,CF=AB可得ABQ≌△ACF,進而得到∠F=BAQ,然后再根據∠F+FAE=90°,可得∠BAQ+FAE═90°,進而證出AFAQ

解:證明:∵BDAC,CEAB,

∴∠ABD+BAC=90°,ACE+BAC=90°,

∴∠ABD=ACE,

又∵BQ=AC,CF=AB,

∴△ABQ≌△FCASAS,

AQ=AF,F=BAQ,

BDAC,即∠F+FAE=90°,

∴∠QAE+FAE=90°,即∠FAQ=90°,

AFAQ

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費方式,方式一:先購買會員證,每張會員證100元,只限本人當年使用,憑證游泳每次再付費5元;方式二:不購買會員證,每次游泳付費9元.

設小明計劃今年夏季游泳次數為x(x為正整數).

(I)根據題意,填寫下表:

游泳次數

10

15

20

x

方式一的總費用(元)

150

175

______

______

方式二的總費用(元)

90

135

______

______

(Ⅱ)若小明計劃今年夏季游泳的總費用為270元,選擇哪種付費方式,他游泳的次數比較多?

(Ⅲ)當x>20時,小明選擇哪種付費方式更合算?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在ABC中,DEBC分別交ABD,交ACE.已知CDBE,CD=3,BE=4,求BC+DE的值.

小明發(fā)現,過點EEFDC,交BC延長線于點F,構造BEF,經過推理和計算能夠使問題得到解決(如圖2).

(1)請按照上述思路完成小明遇到的這個問題

(2)參考小明思考問題的方法,解決問題:

如圖3,已知ABCD和矩形ABEF,ACDF交于點G,AC=BF=DF,求∠DGC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】圓柱底面周長為4cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側面繞3圈到B點,則這根棉線的長度最短為________cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以點A為頂點作等腰RtABC,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE,延長BDCE于點F.

1)試判斷BDCE的關系,并說明理由;

2)把兩個等腰直角三角形按如圖2所示放置,(1)中的結論是否仍成立?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,長青化工廠與AB兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產品運到B地.已知公路運價為1.5/(噸·千米),鐵路運價為1.2/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.

求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產品多少噸?

2)這批產品的銷售款比原料費與運輸費的和多多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD于點O,OE平分∠BODOF平分∠COB,∠AOD:∠BOE=41,則∠AOF等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】折疊矩形紙片:

第一步,如圖1,在紙片一端折出一個正方形MBCN,再把紙片展開;

第二步,如圖2,把這個正方形對折,再把紙片展開,得矩形MAENABCE

第三步,如圖3,折出矩形ABCE的對角線EB,并把EB折到圖中所示的ED處;

第四步,如圖4,展平紙片,按所得點D折出DF,得矩形BFDC.

1)若MN=2時,CM=________;

2的值為 ________.

查看答案和解析>>

同步練習冊答案