【答案】
分析:(1)已知了A點(diǎn)的坐標(biāo),即可求出正比例函數(shù)直線OA的解析式;
(2)根據(jù)C點(diǎn)的橫坐標(biāo)以及直線OC的解析式,可確定C點(diǎn)坐標(biāo),將其代入拋物線的解析式中即可求出待定系數(shù)a的值;
(3)已知了A點(diǎn)的坐標(biāo),即可求出OD、AD的長(zhǎng),由于△OAB是等腰直角三角形,即可確定OB的長(zhǎng);欲求四邊形ABDE的面積,需要分成兩種情況考慮:
①0<m<3時(shí),P點(diǎn)位于線段OD上,此時(shí)陰影部分的面積為△AOB、△ODE的面積差;
②m>3時(shí),P點(diǎn)位于D點(diǎn)右側(cè),此時(shí)陰影部分的面積為△OBE、△OAD的面積差;
根據(jù)上述兩種情況陰影部分的面積計(jì)算方法,可求出不同的自變量取值范圍內(nèi),S、m的函數(shù)關(guān)系式;
(4)若矩形RQMN與△AOB重疊部分為軸對(duì)稱圖形,首先要找出其對(duì)稱軸;
①由于直線OA的解析式為y=x,若設(shè)QM與OA的交點(diǎn)為H,那么∠QEH=45°,△QEH是等腰直角三角形;那么當(dāng)四邊形QRNM是正方形時(shí),重合部分是軸對(duì)稱圖形,此時(shí)的對(duì)稱軸為QN所在的直線;可得QR=RN,由此求出m的值;
②以QM、RN的中點(diǎn)所在直線為對(duì)稱軸,此時(shí)AD所在直線與此對(duì)稱軸重合,可得PD=
RN=
,由OP=OD-PD即可求出m的值;
③當(dāng)P、D重合時(shí),根據(jù)直線OC的解析式y(tǒng)=
x知:RD=
;此時(shí)R是AD的中點(diǎn),由于RN∥x軸,且RN=
=
DB,所以N點(diǎn)恰好位于AB上,RN是△ABD的中位線,此時(shí)重合部分是等腰直角三角形REN,由于等腰直角三角形是軸對(duì)稱圖形,所以此種情況也符合題意,此時(shí)OP=OD=3,即m=3;
當(dāng)R在AB上時(shí),根據(jù)直線OC的解析式可用m表示出R的縱坐標(biāo),即可得到PR、PB的表達(dá)式,根據(jù)PR=PB即可求出m的值;
根據(jù)上述三種軸對(duì)稱情況所得的m的值,及R在AB上時(shí)m的值,即可求得m的取值范圍.
解答:解:(1)設(shè)直線OA的解析式為y=kx,
則有:3k=3,k=1;
∴直線OA的解析式為y=x;
(2)當(dāng)x=6時(shí),y=
x=3,
∴C(6,3);
將C(6,3)代入拋物線的解析式中,
得:36a+12=3,a=-
;
即a的值為-
;
(3)根據(jù)題意,D(3,0),B(6,0).
∵點(diǎn)P的橫坐標(biāo)為m,PE∥y軸交OA于點(diǎn)E,
∴E(m,m).
當(dāng)0<m<3時(shí),如圖1,
S=S
△OAB-S
△OED=
.
當(dāng)m>3時(shí),如圖2,
S=S
△OBE-S
△ODA=
=
.
(4)m=
.
提示:
如圖3、RQ=RN時(shí),m=3-
;
如圖4、AD所在的直線為矩形RQMN的對(duì)稱軸時(shí),m=
;
如圖5、RQ與AD重合時(shí),重疊部分為等腰直角三角形,m=3;
如圖6、當(dāng)點(diǎn)R落在AB上時(shí),m=4,所以3≤m<4.
點(diǎn)評(píng):此題考查了一次函數(shù)與二次函數(shù)解析式的確定、圖形面積的求法、軸對(duì)稱圖形的性質(zhì)等重要知識(shí),在求動(dòng)點(diǎn)類問(wèn)題時(shí),一定要分類討論,以免漏解.