如圖①, 已知拋物線(a≠0)與軸交于點(diǎn)A(1,0)和點(diǎn)B (-3,0),與y軸交于點(diǎn)C.
(1) 求拋物線的解析式;
(2) 點(diǎn)D的坐標(biāo)為(-2,0).問(wèn):直線AC上是否存在點(diǎn)F,使得△ODF是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3) 如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求△BCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
解: (1)由題知: 解得:
∴ 所求拋物線解析式為: ……3分
(2) 存在符合條件的點(diǎn)P, 其坐標(biāo)為P (-1, 2 )或P(-,)
或P(-,)……3分
(3)過(guò)點(diǎn)E 作EF⊥x 軸于點(diǎn)F , 設(shè)E ( a ,--2a+3 )( -3< a < 0 )
∴EF=--2a+3,BF=a+3,OF=-a
∴S四邊形BOCE = BF·EF + (OC +EF)·OF
=( a+3 )·(--2a+3) + (--2a+6)·(-a)
==-+
∴ 當(dāng)a =-時(shí),S四邊形BOCE 最大, 且最大值為 .……3分
∴S四邊形BOCE-S△ABC =-6=
∴點(diǎn)E 坐標(biāo)為 (-,)……1分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
2 |
1 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com