【題目】在正方形ABCD中,過點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),猜想FG與FD的數(shù)量關(guān)系,并說明理由.
(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說明理由.
(應(yīng)用)(3)在圖②中,當(dāng)DF=3,CE=5時(shí),直接利用探究的結(jié)論,求AB的長(zhǎng).
【答案】[感知] FG=FD,理由見解析;
[探究]成立,理由見解析;
[應(yīng)用] .
【解析】
[感知]運(yùn)用折疊的性質(zhì)可證明△AGF≌△ADF,從而得到FG=FD;
[探究] 運(yùn)用折疊的性質(zhì)可證明△AGF≌△ADF,從而得到FG=FD;
[應(yīng)用] 由[探究]中的結(jié)論,可設(shè)AB=x,則FC=x-3,FE=x,然后在Rt△ECF中,根據(jù)勾股定理求解即可.
[感知]猜想:FG=FD.
證明:如圖所示:
連接AF,
由折疊的性質(zhì)可得AB=AG=AD,
在Rt△AGF和Rt△ADF中,
,
∴△AGF≌△ADF,
故可得FG=FD;
[探究] 當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論仍然成立.
證明:如圖所示:
連接AF,
由折疊的性質(zhì)可得AB=AG=AD,
在Rt△AGF和Rt△ADF中,
,
∴△AGF≌△ADF.
∴FG=FD,
故當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中的結(jié)論仍然成立;
[應(yīng)用]設(shè)AB=x,則FC=x-3,FE=x,
在Rt△ECF中,EF2=FC2+EC2,即x2=(x-3)2+52,
解得x=.
即AB的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于E,交AC于F,過點(diǎn)O作OD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則.
其中正確的結(jié)論是____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,a∥b,則∠1+∠2=
(2)如圖2,AB∥CD,則∠1+∠2+∠3= ,并說明理由
(3)如圖3,a∥b,則∠1+∠2+∠3+∠4=
(4)如圖4,a∥b,根據(jù)以上結(jié)論,試探究∠1+∠2+∠3+∠4+…+∠n= (直接寫出你的結(jié)論,無需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=4,求平行四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為AB上一點(diǎn),作CD⊥AB交⊙O于D,連接AD,將△ACD沿AD翻折至△AC′D.
(1)請(qǐng)你判斷C′D與⊙O的位置關(guān)系,并說明理由;
(2)過點(diǎn)B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,中,,,點(diǎn)、在邊上,且.
(1)如圖,當(dāng)時(shí),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,連接,
①求的度數(shù);
②求證:;
(2)如圖,當(dāng)時(shí),猜想、、的數(shù)量關(guān)系,并說明理由;
(3)如圖,當(dāng),,時(shí),請(qǐng)直接寫出的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,E是對(duì)角線AC上一點(diǎn),F(xiàn)是線段BC延長(zhǎng)線上一點(diǎn),且CF=AE,連接BE、EF.
(1)若E是線段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長(zhǎng)線上的任意一點(diǎn),其它條件不變,如圖2、圖3,線段BE、EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) 的圖象經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com