【題目】如圖,在等腰梯形ABCD中,AD∥BC,過點(diǎn)D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長為

【答案】
【解析】解:過A作AE⊥BC于E,

∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°,AE∥DF,
∵AD∥BC,
∴四邊形AEFD是平行四邊形,
∴AE=DF,AD=EF,
∵四邊形ABCD是等腰梯形,AD∥BC,
∴∠B=∠C,
在△AEB和△DFC中

∴△AEB≌△DFC,
∴CF=BE,
∵EF=AD=2,BC=4,
∴BE=CF=1,
在Rt△DFC中,由勾股定理得:CD= = = ,所以答案是:
【考點(diǎn)精析】利用勾股定理的概念和等腰梯形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,定義直線y=ax+b為拋物線y=ax2+bx的特征直線,C(a,b)為其特征點(diǎn).設(shè)拋物線y=ax2+bx與其特征直線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)當(dāng)點(diǎn)A的坐標(biāo)為(0,0),點(diǎn)B的坐標(biāo)為(1,3)時(shí),特征點(diǎn)C的坐標(biāo)為


(2)若拋物線y=ax2+bx如圖所示,請?jiān)谒o圖中標(biāo)出點(diǎn)A、點(diǎn)B的位置;
(3)設(shè)拋物線y=ax2+bx的對稱軸與x軸交于點(diǎn)D,其特征直線交y軸于點(diǎn)E,點(diǎn)F的坐標(biāo)為(1,0),DE∥CF.
①若特征點(diǎn)C為直線y=﹣4x上一點(diǎn),求點(diǎn)D及點(diǎn)C的坐標(biāo)
②若<tan∠ODE<2,則b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處(如圖1).
(1)如圖2,設(shè)折痕與邊BC交于點(diǎn)O,連接,OP、OA.已知△OCP與△PDA的面積比為1:4,求邊AB的長;
(2)動點(diǎn)M在線段AP上(不與點(diǎn)P、A重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN、CA,交于點(diǎn)F,過點(diǎn)M作ME⊥BP于點(diǎn)E.
①在圖1中畫出圖形;
②在△OCP與△PDA的面積比為1:4不變的情況下,試問動點(diǎn)M、N在移動的過程中,線段EF的長度是否發(fā)生變化?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠B=30°.動點(diǎn)P從點(diǎn)B出發(fā),沿B﹣C﹣D的路線向點(diǎn)D運(yùn)動.設(shè)△ABP的面積為y(B、P兩點(diǎn)重合時(shí),△ABP的面積可以看做0),點(diǎn)P運(yùn)動的路程為x,則y與x之間函數(shù)關(guān)系的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與雙曲線 (x>0)交于A、B兩點(diǎn),與x軸、y軸分別交于E、F兩點(diǎn),連接OA、OB,若SAOB=SOBF+SOAE , 則b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,﹣1)、B(﹣1,1)、C(0,﹣2).

(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對稱的點(diǎn)的坐標(biāo)為
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過點(diǎn)B1的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5C53.560.5;D60.567.5;E67.574.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補(bǔ)全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計(jì)圖中D組的圓心角是 度;

3)請你估計(jì)該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點(diǎn),作,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是(

EF=CF

A. ①②③ B. ①② C. ②③ D. ①②④

查看答案和解析>>

同步練習(xí)冊答案