精英家教網(wǎng)已知:如圖,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,則斜邊AB的長為
 
分析:作EM⊥BC,DN⊥BC,設(shè)AB=3x則BE=DE=AD=x;設(shè)BC=3y,則BM=MN=NC=y,2ME=ND,利用勾股定理分別列出:ME2+MC2=EC2,ND2+NC2=CD2,然后將兩式相加,求得BE的長即可求得AB的長.
解答:精英家教網(wǎng)解:作EM⊥BC,DN⊥BC.
∵∠C=90°,
∴∠BME=∠BND=90°,
設(shè)AB=3x,則BE=DE=AD=x
設(shè)BC=3y,則BM=MN=NC=y,2ME=ND,
在Rt△CME中,ME2+MC2=EC2.(1)
在Rt△CND中,ND2+NC2=CD2.(2)
(1)+(2)得:5ME2+5y2=1,ME2+y2=
1
5

在Rt△BME中:BE2=BM2+ME2,即:x2=y2+ME2=
1
5
,
∴AB=3BE=
3
5
5

故答案為:
3
5
5
點評:此題主要考查學(xué)生對勾股定理知識點的理解和掌握,解答此題的關(guān)鍵是設(shè)AB=3x,則BE=DE=AD=x;設(shè)BC=3y,則BM=MN=NC=y,2ME=ND,此題難度較大,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設(shè)點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)當(dāng)點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點精英家教網(wǎng)P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在直角坐標系中,矩形OABC的對角線AC所在直線解析式為y=-
3
3
x+1.
(1)在x軸上存在這樣的點M,使AMB為等腰三角形,求出所有符合要求的點M的坐標;
(2)動點P從點C開始在線段CO上以每秒
3
個單位長度的速度向點O移動,同時,動點Q從點O精英家教網(wǎng)開始在線段OA上以每秒1個單位長度的速度向點A移動.設(shè)P、Q移動的時間為t秒.
①是否存在這樣的時刻2,使△OPQ與△BCP相似,并說明理由;
②設(shè)△BPQ的面積為S,求S與t間的函數(shù)關(guān)系式,并求出t為何值時,S有最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角坐標系中,⊙O1經(jīng)過坐標原點,分別與x軸正半軸、y軸正半軸交于點A、B.
(1)若點O到直線AB的距離為
12
5
,且tan∠B=
3
4
,求線段AB的長;
(2)若點O到直線AB的距離為
12
5
,過點A的切線與y軸交于點C,過點O的切線交AC于點D,過點B的切線交OD于點E,求
1
CD
+
1
BE
的值;
(3)如圖,若⊙O1經(jīng)過點M(2,2),設(shè)△BOA的內(nèi)切圓的直徑為精英家教網(wǎng)d,試判斷d+AB的值是否會發(fā)生變化,若不變,求出其值;若變化,求其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD,BE⊥DC于點E.求證:AD=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,CD=8,BC=12,∠ACB=30°,E為BC邊上一點,以BE為邊作正三角形BEF,使正三角形BEF和梯形ABCD在BC的同側(cè).
(l)當(dāng)正三角形BEF的頂點F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正三角形BEF沿BC向右平移,記平移中的正三角形BEF為正三角形B′E′F′,當(dāng)點E與點C重合時停止平移.設(shè)平移的距離為x,正三角形B′E′F′的邊B′E′和E′F′分別與AC交于點M和點N,連接,DM,DN:
①設(shè)正三角形B′E′F′與△ABC重疊部分的面積為S,求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍,求當(dāng)DN取得最小值時,求出S的值;
②是否存在這樣的x,使三角形DMN是直角三角形?若存在,求出x的值;若不存在,請說明理由. 

查看答案和解析>>

同步練習(xí)冊答案