【題目】在如圖,已知∠1=∠2,∠3=∠4,求證:AC∥DF,BC∥EF.證明過(guò)程如下:

∵∠1=∠2(已知),

∴AC∥DF(A.同位角相等,兩直線平行),

∴∠3=∠5(B.內(nèi)錯(cuò)角相等,兩直線平行).

∵∠3=∠4(已知)

∴∠5=∠4(C.等量代換),

∴BC∥EF(D.內(nèi)錯(cuò)角相等,兩直線平行).

上述過(guò)程中判定依據(jù)錯(cuò)誤的是(

A. A B. B C. C D. D

【答案】B

【解析】

根據(jù)平行線的判定與性質(zhì)逐項(xiàng)分析即可.

∵∠1=2(已知),

ACDFA.同位角相等,兩直線平行),

∴∠3=5B.兩直線平行,內(nèi)錯(cuò)角相等).

又∵∠3=4(已知)

∴∠5=4C.等量代換),

BCEFD.內(nèi)錯(cuò)角相等,兩直線平行).

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運(yùn)會(huì)的召開(kāi),深圳市全面實(shí)施市容市貌環(huán)境提升行動(dòng).某工程隊(duì)承擔(dān)了一段長(zhǎng)為1500米的道路綠化工程,施工時(shí)有兩張綠化方案: 甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長(zhǎng)度不能少于按甲方案綠化道路的總長(zhǎng)度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長(zhǎng)度為多少米時(shí),所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中∠C=90°,A=30°,BC=2,點(diǎn)P,Q,R分別是AB,AC,BC上的動(dòng)點(diǎn),PQ+PR+QR的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過(guò)點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)正方形紙片ABCD進(jìn)行如下操作:
(i)過(guò)點(diǎn)D任作一條直線與BC邊相交于點(diǎn)E1(如圖①),記∠CDE11;
(ii)作∠ADE1的平分線交AB邊于點(diǎn)E2(如圖②),記∠ADE22;
(iii)作∠CDE2的平分線交BC邊于點(diǎn)E3(如圖③),記∠CDE33;
按此作法從操作(2)起重復(fù)以上步驟,得到α1 , α2 , …,αn , …,現(xiàn)有如下結(jié)論:①當(dāng)α1=10°時(shí),α2=40°;②2α43=90°; ③當(dāng)α5=30°時(shí),△CDE9≌△ADE10;④當(dāng)α1=45°時(shí),BE2=
其中正確的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).

(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2
(2)求點(diǎn)C1在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點(diǎn),證明:AP=AQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;

(2)∠A與∠CED是直線________,________被直線________所截形成的________角;

(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;

(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階.下圖是其中的甲、乙兩段臺(tái)階路的示意圖.請(qǐng)你用所學(xué)過(guò)的有關(guān)統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)回答下列問(wèn)題:

(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?

(2)哪段臺(tái)階路走起來(lái)更舒服?為什么?

(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.

圖中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm),并且數(shù)據(jù)15,16,16,14,14,15的方差s2,數(shù)據(jù)11,15,18,17,10,19的方差s2.

查看答案和解析>>

同步練習(xí)冊(cè)答案