【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
三等分任意角問(wèn)題是數(shù)學(xué)史上一個(gè)著名的問(wèn)題,直到1837年,數(shù)學(xué)家才證明了“三等分任意角”是不能用尺規(guī)完成的.
在探索中,出現(xiàn)了不同的解決問(wèn)題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長(zhǎng)線上一點(diǎn),G是CF上一點(diǎn),CF與AB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECB=∠ACB.
方法二:
數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OB在x軸上,邊OA與函數(shù)y=的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過(guò)點(diǎn)P作x軸的平行線,過(guò)點(diǎn)R作y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過(guò)點(diǎn)P作PH⊥x軸于點(diǎn)H,過(guò)點(diǎn)R作RQ⊥PH于點(diǎn)Q,則∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長(zhǎng).
(2)完成“方法二”的證明.
【答案】(1)2;(2)證明見(jiàn)解析.
【解析】
(1)先求出AC的值再求出∠ACB,利用三角函數(shù)即可解答
(2)設(shè)點(diǎn)P的坐標(biāo)為(a,),點(diǎn)R的坐標(biāo)為(b,),則點(diǎn)Q的坐標(biāo)為(a,),點(diǎn)M的坐標(biāo)為(b,),求出直線OM的解析式,得出四邊形PQRM為矩形,設(shè)PR交MQ于點(diǎn)S,根據(jù)SP=SQ=SR=SM=PR,即可解答
(1)解:∵∠ACG=∠AGC,∠GAF=∠F,
∴AC=AG=GF=4.
∵∠ECB= ∠ACB,∠ACF=40°,
∴∠ACB= ∠ACF=60°,
∴BC=ACcos∠ACB=4×=2.
(2)證明:設(shè)點(diǎn)P的坐標(biāo)為(a,),點(diǎn)R的坐標(biāo)為(b,),則點(diǎn)Q的坐標(biāo)為(a,),點(diǎn)M的坐標(biāo)為(b,).
設(shè)直線OM的解析式為y=kx(k≠0),
將M(b,)代入y=kx,得:=kb,
∴k=,
∴直線OM的解析式為y=x.
∵當(dāng)x=a時(shí),y=,
∴點(diǎn)Q在直線OM上.
∵PH⊥x軸,RQ⊥PH,MP∥x軸,MR∥y軸,
∴四邊形PQRM為矩形.
設(shè)PR交MQ于點(diǎn)S,如圖(2)所示.
則SP=SQ=SR=SM=/span>PR,
∴∠SQR=∠SRQ.
∵PR=2OP,
∴PS=OP=PR,
∴∠POS=∠PSO.
∵∠PSQ=2∠SQR,
∴∠POS=2∠SQR.
∵RQ∥OB,
∴∠MOB=∠SQR,
∴∠POS=2∠MOB,
∴∠MOB=∠AOB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A、D分別在x軸、y軸上,∠ADO=30°,OA=2,反比例函y=經(jīng)過(guò)CD的中點(diǎn)M,那么k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 為更新果樹(shù)品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹(shù)苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹(shù)苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計(jì)如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次,平均數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有200名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.某商場(chǎng)為緩解“停車難”問(wèn)題,擬建造地下停車庫(kù),如圖是該地下停車庫(kù)坡道入口的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5 m.根據(jù)規(guī)定,地下停車庫(kù)坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)?/span>.小明認(rèn)為CD的長(zhǎng)就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長(zhǎng)作為限制的高度.小明和小亮誰(shuí)說(shuō)得對(duì)?請(qǐng)你判斷并計(jì)算出正確的結(jié)果.(結(jié)果精確到0.1 m,參考數(shù)據(jù):sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)矩形的一邊是另一邊的兩倍,則稱這個(gè)矩形為方形.如圖1,矩形中,,則稱為方形.
(Ⅰ)設(shè)是方形的一組鄰邊,寫出的一組值為__________;
(Ⅱ)在中,將分別五等分,連結(jié)兩邊對(duì)應(yīng)的等分點(diǎn),以這些連結(jié)線為一邊作矩形,使得這些矩形的邊的對(duì)邊分別在上,如圖2所示.
①若,邊上的高為,判斷以為一邊的矩形是否是方形?_________(填“是”或“否”);②若以為一邊的矩形為方形,則與邊上的高之比為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)E是正方形ABCD邊CD上任意一點(diǎn),以DE為邊作正方形DEFG,連接BF,點(diǎn)M是線段BF中點(diǎn),射線EM與BC交于點(diǎn)H,連接CM.
(1)請(qǐng)直接寫出CM和EM的數(shù)量關(guān)系和位置關(guān)系;
(2)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°,此時(shí)點(diǎn)F恰好落在線段CD上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由;
(3)把圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,此時(shí)點(diǎn)E、G恰好分別落在線段AD、CD上,如圖3,其他條件不變,(1)中的結(jié)論是否成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊,可繞點(diǎn)開(kāi)合,在邊上有一固定點(diǎn),支柱可繞點(diǎn)轉(zhuǎn)動(dòng),邊上有六個(gè)卡孔,其中離點(diǎn)最近的卡孔為,離點(diǎn)最遠(yuǎn)的卡孔為.當(dāng)支柱端點(diǎn)放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺(tái)面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測(cè)得的長(zhǎng)為,為,支柱為.
(1)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),求的度數(shù);
(2)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),,若相鄰兩個(gè)卡孔的距離相同,求此間距.(結(jié)果精確到十分位)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com