【題目】如圖,在平面直角坐標(biāo)系中,直線AB與直線BC相交于點(diǎn),直線AB軸相交于點(diǎn),直線BC軸、軸分別相交于點(diǎn)、點(diǎn)C

1)求直線AB的解析式;

2)過點(diǎn)ABC的平行線交軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);

3)在(2)的條件下,點(diǎn)P是直線AB上一動(dòng)點(diǎn)且在軸的上方,如果以點(diǎn)D、E、P、Q為頂點(diǎn)的平行四邊形的面積等于△ABC,請求出點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).

【答案】1;(2E20);(3P(-22),

【解析】

1)利用待定系數(shù)法直接求函數(shù)的解析式,(2)先求BC的解析式,利用BC與過A的直線平行與待定系數(shù)法求解析式即可,(3)利用△ABC的面積求出點(diǎn)P的縱坐標(biāo),再求點(diǎn)P的橫坐標(biāo),由平行四邊形的性質(zhì)與點(diǎn)的平移得到點(diǎn)Q的坐標(biāo).

解:(1)設(shè)直線AB過點(diǎn)A(0,4),,可設(shè)解析式

所以:

   解得:

所以:直線AB的解析式

2)設(shè)直線BC的解析式為

因?yàn)?/span>B-2,2),D-1,0

所以 可得

直線BC的解析式為

則過點(diǎn)A且平行于直線BC的解析式為

E20

3)因?yàn)椋褐本BC為:,所以:,

又因?yàn)椋?/span>

所以:,所以以D、EP、Q為頂點(diǎn)的平行四邊形的面積是6

如圖,由,

因?yàn)椋?/span>,,所以:把代入AB的解析式:

所以:,所以

因?yàn)椋?/span> ,

所以由平行四邊形的性質(zhì)與點(diǎn)的平移可得:

所以:P(-22),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面從認(rèn)知、延伸、應(yīng)用三個(gè)層面來研究一種幾何模型.

1)如圖,已知點(diǎn)E是線段BC上一點(diǎn),若∠AED=∠B=∠C.求證 ABE∽△ECD

2)如圖,已知點(diǎn)E、F是線段BC上兩點(diǎn),AEDF交于點(diǎn)H,若∠AHD=∠B=∠C

求證:△ABE∽△FCD

3)如圖,⊙O是等邊△ABC的外接圓,點(diǎn)D上一點(diǎn),連接BD并延長交AC的延長線于點(diǎn)E;連接CD并延長交AB的延長線于點(diǎn)F. 猜想BF、BC、CE三線段的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC外接圓O上的點(diǎn),在以下判斷中,不正確的是

A、當(dāng)弦PB最長時(shí),ΔAPC是等腰三角形 B、當(dāng)ΔAPC是等腰三角形時(shí),POAC

C、當(dāng)POAC時(shí),ACP=300 D、當(dāng)ACP=300時(shí)ΔPBC是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤與投資量成正比例關(guān)系,如圖1所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖2所示注:利潤與投資量的單位:萬元

(1)分別求出利潤關(guān)于投資量的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是矩形的邊上的一個(gè)動(dòng)點(diǎn),矩形的兩條邊、的長分別為68,那么點(diǎn)到矩形的兩條對角線的距離之和是(

A.B.C.D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)分別在函數(shù)的圖象上, 、的橫坐標(biāo)分別為

(1)軸,求的面積;

(2)是以為底邊的等腰三角形,且a,求的值;

(3)作邊長為2的正方形,使軸,點(diǎn)在點(diǎn)的左上方,那么,對大于或等于的任意實(shí)數(shù), 邊與函數(shù)的圖象都有交點(diǎn),請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過作直線.設(shè)的平分線于點(diǎn),交的外角平分線于點(diǎn)

1)求證:;

2)若,,求的長;

3)當(dāng)點(diǎn)在邊上運(yùn)動(dòng)到什么位置時(shí),四邊形是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0,

(1)當(dāng)k為何值時(shí),方程有實(shí)數(shù)根;

(2)設(shè)x1,x2是方程的兩個(gè)實(shí)數(shù)根,且x12+x22=4,求k的值.

查看答案和解析>>

同步練習(xí)冊答案