(2005•哈爾濱)已知:直線(xiàn)y=2x+6與x軸和y軸分別交于A、C兩點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,點(diǎn)B是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn).
(1)求拋物線(xiàn)的解析式及B的坐標(biāo);
(2)設(shè)點(diǎn)P是直線(xiàn)AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線(xiàn)y=x+a與(1)中所求的拋物線(xiàn)交于M、N兩點(diǎn),問(wèn):是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)先根據(jù)直線(xiàn)的解析式求出A、C的坐標(biāo),然后將A、C的坐標(biāo)代入拋物線(xiàn)中即可求出拋物線(xiàn)的解析式,進(jìn)而可根據(jù)拋物線(xiàn)的解析式求出B點(diǎn)的坐標(biāo).
(2)根據(jù)等高三角形的面積比等于底邊比,因此兩三角形的面積比實(shí)際是AP:PC=1:3,即3AP=PC,可先求出AC的長(zhǎng),然后分情況討論:
①當(dāng)P在線(xiàn)段AC上時(shí),AP+PC=AC,3AP=PC,據(jù)此可求出AP的長(zhǎng),然后根據(jù)∠CAB的三角函數(shù)值或通過(guò)構(gòu)建相似三角形可求出P點(diǎn)的坐標(biāo).
②當(dāng)P在CA的延長(zhǎng)線(xiàn)上時(shí),CP-AP=AC,3AP=PC,據(jù)此可求出AP的長(zhǎng),后面同①.
(3)可聯(lián)立兩函數(shù)的解析式,求出M、N的坐標(biāo),過(guò)M、N作x軸的垂線(xiàn)設(shè)垂足為M′、N′,由于∠MON=90°,因此可得出△MM′O與△N′N(xiāo)O相似,可得出M、N兩點(diǎn)的橫、縱坐標(biāo)的絕對(duì)值對(duì)應(yīng)成比例,據(jù)此可求出a的值.(也可用坐標(biāo)系的兩點(diǎn)間的距離公式,根據(jù)勾股定理來(lái)求解.)
解答:解:(1)當(dāng)x=0時(shí),y=6,
∴C(0,6),
當(dāng)y=0時(shí),x=-3,
∴A(-3,0),
∵拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,
,
解得:
∴拋物線(xiàn)的解析式為y=-x2-x+6,
當(dāng)y=0時(shí),整理得x2+x-6=0,
解得:x1=2,x2=-3,
∴點(diǎn)B(2,0).

(2)過(guò)點(diǎn)B作BD⊥AC,D為垂足,
∵S△ABP:S△BPC=1:3,
=,
∴AP:PC=1:3
由勾股定理,得AC=
當(dāng)點(diǎn)P為線(xiàn)段AC上一點(diǎn)時(shí),過(guò)點(diǎn)P作PH⊥x軸,點(diǎn)H為垂足,

∴PH=,
=2x+6,
∴x=-,
∴點(diǎn)P(
當(dāng)點(diǎn)P在CA延長(zhǎng)線(xiàn)時(shí),作PG⊥x軸,點(diǎn)G為垂足
∵AP:PC=1:3
∴AP:AC=1:2,
,
∴PG=3,
∴-3=2x+6
,
∴點(diǎn)P(,-3).

(3)存在a的值,使得∠MON=90°,
設(shè)直線(xiàn)y=x+a與拋物線(xiàn)y=-x2-x+6的交點(diǎn)為M(xM,yM),N(xN,yN)(M在N左側(cè))

為方程組的解
分別過(guò)點(diǎn)M、N作MM’⊥x軸,NN′⊥x軸,點(diǎn)M、N為垂足.
∴M′(xM,0),N′(xN,0),
∴OM′=-xMON′=xN
∵∠MON=90°,
∴∠MOM′+∠NON′=90°,
∵∠M′MO+∠MOM′=90°,
∴∠M’MO=∠NON’
∴Rt△MM′O∽R(shí)t△ON′N(xiāo),
,
∴MM′•NN′=ON′•OM′,
∴-xM•xN=yM•y,
由方程組消去y整理,得:x2+x+a-6=0.
∴xM、xN是方程x2+x+a-6=0的兩個(gè)根,
由根與系數(shù)關(guān)系得,xM+xN=,xM•xN=a-6
又∵yM•yN=(xM+a)(xN+a)=xM•xN+(xM+xN)+a2=(a-6)-a+a2
∴-(a-6)=(a-6)-a+a2
整理,得2a2+a-15=0
解得a1=-3,a2=
∴存在a值,使得∠MON=90°,其值為a=-3或a=
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形面積的計(jì)算方法、三角形相似、函數(shù)圖象交點(diǎn)等重要知識(shí)點(diǎn),綜合性強(qiáng),能力要求較高.考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•哈爾濱)已知:直線(xiàn)y=2x+6與x軸和y軸分別交于A、C兩點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,點(diǎn)B是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn).
(1)求拋物線(xiàn)的解析式及B的坐標(biāo);
(2)設(shè)點(diǎn)P是直線(xiàn)AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線(xiàn)y=x+a與(1)中所求的拋物線(xiàn)交于M、N兩點(diǎn),問(wèn):是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2005•哈爾濱)甲、乙兩名同學(xué)進(jìn)行登山比賽,圖中表示甲同學(xué)和乙同學(xué)沿相同的路線(xiàn)同時(shí)從山腳出發(fā)到達(dá)山頂過(guò)程中,各自行進(jìn)的路程隨時(shí)間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問(wèn)題:
(1)分別求出表示甲、乙兩同學(xué)登山過(guò)程中路程s(千米)與時(shí)間t(時(shí))的函數(shù)解析式;(不要求寫(xiě)出自變量t的取值范圍)
(2)當(dāng)甲到達(dá)山頂時(shí),乙行進(jìn)到山路上的某點(diǎn)A處,求A點(diǎn)距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)乙同學(xué)從A處繼續(xù)登山,甲同學(xué)到達(dá)山頂后休息1小時(shí),沿原路下山,在點(diǎn)B處與乙相遇,此時(shí)點(diǎn)B與山頂距離為1.5千米,相遇后甲、乙各自按原來(lái)的路線(xiàn)下山和上山,求乙到達(dá)山頂時(shí),甲離山腳的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•哈爾濱)已知:直線(xiàn)y=2x+6與x軸和y軸分別交于A、C兩點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,點(diǎn)B是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn).
(1)求拋物線(xiàn)的解析式及B的坐標(biāo);
(2)設(shè)點(diǎn)P是直線(xiàn)AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線(xiàn)y=x+a與(1)中所求的拋物線(xiàn)交于M、N兩點(diǎn),問(wèn):是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•哈爾濱)甲、乙兩名同學(xué)進(jìn)行登山比賽,圖中表示甲同學(xué)和乙同學(xué)沿相同的路線(xiàn)同時(shí)從山腳出發(fā)到達(dá)山頂過(guò)程中,各自行進(jìn)的路程隨時(shí)間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問(wèn)題:
(1)分別求出表示甲、乙兩同學(xué)登山過(guò)程中路程s(千米)與時(shí)間t(時(shí))的函數(shù)解析式;(不要求寫(xiě)出自變量t的取值范圍)
(2)當(dāng)甲到達(dá)山頂時(shí),乙行進(jìn)到山路上的某點(diǎn)A處,求A點(diǎn)距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)乙同學(xué)從A處繼續(xù)登山,甲同學(xué)到達(dá)山頂后休息1小時(shí),沿原路下山,在點(diǎn)B處與乙相遇,此時(shí)點(diǎn)B與山頂距離為1.5千米,相遇后甲、乙各自按原來(lái)的路線(xiàn)下山和上山,求乙到達(dá)山頂時(shí),甲離山腳的距離是多少千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案