【題目】設拋物線與x軸的交點分別為A、B(點A在點B的左側),頂點為C.若a、b、c滿足,則稱該拋物線為“正定拋物線”;若a、b、c滿足,則稱該拋物線為“負定拋物線”.特別地,若某拋物線既是“正定拋物線”又是“負定拋物線”,則稱該拋物線為“對稱拋物線”.
(1)“正定拋物線”必經過x軸上的定點______;“負定拋物線”必經過x軸上的定點______.
(2)若拋物線是“對稱拋物線”,且△ABC是等邊三角形,求此拋物線對應的函數(shù)表達式.
(3)若拋物線是“正定拋物線”,設此拋物線交y軸于點D,△BCD的面積為S,求S與b之間的函數(shù)關系式.
【答案】(1)(1,0),(-1,0).(2). (3) 當時,.
當時..當時,.
【解析】分析:(1)“正定拋物線”a、b、c滿足,即當時,過點“負定拋物線”a、b、c滿足,即當時,過點
根據(jù)“對稱拋物線”的定義可知拋物線經過點(1,0)、(-1,0).根據(jù)△ABC是等邊三角形,得出或.即可求出此拋物線對應的函數(shù)表達式.
(3)拋物線是“正定拋物線”,拋物線過點代入得.
即.表示出,.分三種情況寫出S即可.
詳解:(1)“正定拋物線”a、b、c滿足,即當時,過點“負定拋物線”a、b、c滿足,即當時,過點
故答案為:(1,0),(-1,0).
(2)∵拋物線是“對稱拋物線”,
∴拋物線經過點(1,0)、(-1,0).
∴ 解得
∵△ABC是等邊三角形,
∴.
∴或.
當時,.
此拋物線對應的函數(shù)表達式為.
當時,.
此拋物線對應的函數(shù)表達式為.
(3)∵拋物線是“正定拋物線”,
∴.
∴.
∴.
∵點C為拋物線的頂點,點D為拋物線和y軸的交點,
∴,.
當時.
.
當時.
.
當時.
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一套房子的平面圖,尺寸如圖.
(1)這套房子的總面積是多少?(用含x、y的代數(shù)式表示)
(2)如果x=1.8米,y=1米,那么房子的面積是多少平方米?如果每平方米房價為5萬元,那么房屋總價多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班同學為了解2019年某小區(qū)家庭月均用水情況,隨機調查了該小區(qū)部分家庭,并將調查數(shù)據(jù)進行整理如下:
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
請解答下列問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)求該小區(qū)用水量不超過15t的家庭占被調查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A、B分別落在x軸、y軸的正半軸上,頂點C在第一象限,BC與x軸平行.已知BC=2,△ABC的面積為1.
(1)求點C的坐標.
(2)將△ABC繞點C順時針旋轉90°,△ABC旋轉到△A1B1C的位置,求經過點B1的反比例函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】星期五晚上,小明和他的媽媽一起看《歌手》,歌手演唱完后要評選出名次,在已公布四到七名后,還有華晨宇、汪峰、張韶涵三位選手沒有公布名次.
(1)求汪峰獲第一名的概率;
(2)如果小明和媽媽一起競猜第一名,那么兩人中一個人猜中另一個人卻沒猜中的概率是多少?(請用“樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)
(1)求B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的左側,經過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;
(3)若B地在原點的右側,那么經過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,四邊形OABC為矩形,A(6,0),C(0,3),點M在邊OA上,且M(4,0),P、Q兩點同時從點M出發(fā),點P沿x軸向右運動;點Q沿x軸先向左運動至原點O后,再向右運動到點M停止,點P隨之停止運動.P、Q兩點運動的速度分別為每秒1個單位、每秒2個單位.以PQ為一邊向上作正方形PRLQ.設點P的運動時間為t(秒),正方形PRLQ與矩形OABC重疊部分(陰影部分)的面積為S(平方單位).
(1)用含t的代數(shù)式表示點P的坐標.
(2)分別求當t=1,t=3時,線段PQ的長.
(3)求S與t之間的函數(shù)關系式.
(4)直接寫出L落在第一象限的角平分線上時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解下面內容,并解決問題:
善于思考的小明在學習《實數(shù)》一章后,自己探究出了下面的兩個結論:
①,,和都是9×4的算術平方根,
而9×4的算術平方根只有一個,所以=.
②,,和都是9×16的算術平方根,
而9×16的算術平方根只有一個,所以 .
請解決以下問題:
(1)請仿照①幫助小明完成②的填空,并猜想:一般地,當a≥0,b≥0時,與、之間的大小關系是怎樣的?
(2)再舉一個例子,檢驗你猜想的結果是否正確.
(3)運用以上結論,計算:的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com