如圖,點(diǎn)G在CA的延長(zhǎng)線上,AF=AG,∠ADC=∠GEC,則AD一定平分∠BAC,談?wù)勀愕目捶ǎ?/P>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把兩個(gè)全等的直角三角板的斜邊重合,組成一個(gè)四邊形ABCD以D為頂點(diǎn)作∠MDN,交邊AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點(diǎn)D旋轉(zhuǎn)時(shí),AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)∠ACD+∠MDN=90°時(shí),AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長(zhǎng)上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫(xiě)出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•延平區(qū)質(zhì)檢)如圖,菱形ABCD中,AC、BD相交于點(diǎn)O,CA=8,DB=4,點(diǎn)E在AB上,過(guò)O作OF⊥OE于O,OF=
12
OE,連接FB.
(1)求證:∠AEO=∠BFO
(2)當(dāng)點(diǎn)E在線段AB上運(yùn)動(dòng)時(shí),請(qǐng)寫(xiě)出一個(gè)反映BE2,BF2,EF2之間關(guān)系的等式,并說(shuō)明理由;
(3)當(dāng)點(diǎn)E在線段AB的延長(zhǎng)線上運(yùn)動(dòng)時(shí),如圖,此時(shí)(2)中的結(jié)論是否依然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

把兩個(gè)全等的直角三角板的斜邊重合,組成一個(gè)四邊形ABCD以D為頂點(diǎn)作∠MDN,交邊AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點(diǎn)D旋轉(zhuǎn)時(shí),AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)∠ACD+∠MDN=90°時(shí),AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長(zhǎng)上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫(xiě)出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市元月調(diào)考九年級(jí)(上)數(shù)學(xué)熱身卷(四)(解析版) 題型:解答題

把兩個(gè)全等的直角三角板的斜邊重合,組成一個(gè)四邊形ABCD以D為頂點(diǎn)作∠MDN,交邊AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點(diǎn)D旋轉(zhuǎn)時(shí),AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)∠ACD+∠MDN=90°時(shí),AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長(zhǎng)上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫(xiě)出結(jié)論,不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案