【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
【答案】(1)y=- (2)點(diǎn)P(﹣6,0)或(﹣2,0)
【解析】
(1)利用點(diǎn)A在y=﹣x+4上求a,進(jìn)而代入反比例函數(shù)求k.
(2)聯(lián)立方程求出交點(diǎn),設(shè)出點(diǎn)P坐標(biāo)表示三角形面積,求出P點(diǎn)坐標(biāo).
(1)把點(diǎn)A(﹣1,a)代入y=x+4,得a=3,
∴A(﹣1,3)
把A(﹣1,3)代入反比例函數(shù)
∴k=﹣3,
∴反比例函數(shù)的表達(dá)式為
(2)聯(lián)立兩個函數(shù)的表達(dá)式得
解得
或
∴點(diǎn)B的坐標(biāo)為B(﹣3,1)
當(dāng)y=x+4=0時,得x=﹣4
∴點(diǎn)C(﹣4,0)
設(shè)點(diǎn)P的坐標(biāo)為(x,0)
∵,
∴
解得x1=﹣6,x2=﹣2
∴點(diǎn)P(﹣6,0)或(﹣2,0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩則材料,回答問題,材料一:定義直線y=ax+b與直線y=bx+a互為“互助直線”,例如,直線y=x+4與直y=4x+1互為“互助直線”;材料二:對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),P1、P2兩點(diǎn)間的直角距離d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)兩點(diǎn)間的直角距離為d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:設(shè)P0(x0,y0)為一個定點(diǎn),Q(x,y)是直線y=ax+b上的動點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.
(1)計(jì)算S(﹣1,6),T(﹣2,3)兩點(diǎn)間的直角距離d(S,T)= ;
(2)直線y=﹣2x+3上的一點(diǎn)H(a,b)又是它的“互助直線”上的點(diǎn),求點(diǎn)H的坐標(biāo).
(3)對于直線y=ax+b上的任意一點(diǎn)M(m,n),都有點(diǎn)N(3m,2m﹣3n)在它的“互助直線”上,試求點(diǎn)L(5,﹣1)到直線y=ax+b的直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(1)班積極響應(yīng)校團(tuán)委的號召,每位同學(xué)都向“希望工程”捐獻(xiàn)圖書,全班40名同學(xué)共捐圖書400冊.特別值得一提的是李保、王剛兩位同學(xué)在父母的支持下各捐獻(xiàn)了90冊圖書.班長統(tǒng)計(jì)了全班捐書情況如下表(被粗心的馬小虎用墨水污染了一部分):
冊數(shù) | 4 | 5 | 6 | 7 | 8 | 90 |
人數(shù) | 6 | 8 | 15 | 2 |
(1)分別求出該班級捐獻(xiàn)7冊圖書和8冊圖書的人數(shù);
(2)請算出捐書冊數(shù)的平均數(shù)、中位數(shù)和眾數(shù),并判斷其中哪個統(tǒng)計(jì)量不能反映該班同學(xué)捐書冊數(shù)的一般狀況,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項(xiàng)式及叫做完全平方式”,如果一個多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個項(xiàng),使整個式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當(dāng)時,有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當(dāng)為何值時,多項(xiàng)式有最小值,并求出這個最小值.
(3)當(dāng)為何值時.多項(xiàng)式有最小值并求出這個最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點(diǎn)在軸上,且.
(1)求點(diǎn)的坐標(biāo);
(2)求的面積;
(3)在軸上是否存在點(diǎn),使以、、三點(diǎn)為頂點(diǎn)的三角形的面積為7?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是以AB為直徑的半圓O的三等分點(diǎn),AC=2,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)的圖象和性質(zhì).靜靜根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象進(jìn)行了探究,下面是靜靜的探究過程,請補(bǔ)充完成:
(1)化簡函數(shù)解析式,當(dāng)時, ,當(dāng)時, .
(2)根據(jù)(1)的結(jié)果,完成下表,并補(bǔ)全函數(shù)圖象.
(3)觀察函數(shù)圖象,請寫出該函數(shù)的一條性質(zhì): ;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com