【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,以AD為邊向外作RtADE,AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____

【答案】10;

【解析】

過點(diǎn)O作OM⊥AE于點(diǎn)M,作ON⊥DE,交ED的延長線于點(diǎn)N,易得四邊形EMON是正方形,點(diǎn)A,O,D,E共圓,則可得△OEN是等腰直角三角形,求得EN的長,繼而證得Rt△AOM≌Rt△DON,得到AM=DN,繼而求得答案.

過點(diǎn)O作OM⊥AE于點(diǎn)M,作ON⊥DE,交ED的延長線于點(diǎn)N,

∵∠AED=90°,

∴四邊形EMON是矩形,
∵正方形ABCD的對(duì)角線交于點(diǎn)O,
∴∠AOD=90°,OA=OD,
∴∠AOD+∠AED=180°,
∴點(diǎn)A,O,D,E共圓,
,
∴∠AEO=∠DEO=∠AED=45°,
∴OM=ON,
∴四邊形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=8,
∴EN=8,
∴EM=EN=8,
在Rt△AOM和Rt△DON中,

,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN-ED=8-6=2,
∴AE=AM+EM=2+8=10.
故答案為:10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,邊的垂直平分線分別交于點(diǎn),若,則的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1) 2.

【答案】1x1 =1 ,x2=; (2) x1 =-1,x2= .

【解析】試題分析:

根據(jù)兩方程的特點(diǎn),使用“因式分解法”解兩方程即可.

試題解析

1)原方程可化為: ,

方程左邊分解因式得 ,

,

解得 , .

2)原方程可化為: ,即,

,

,

解得 .

型】解答
結(jié)束】
20

【題目】已知x1,x2是關(guān)于x的一元二次方程x22(m1)xm250的兩實(shí)根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠用如圖甲所示的長方形和正方形紙板做成如圖乙所示的 A、B 兩種長方體形狀的無蓋紙盒.現(xiàn) 有正方形紙板 120 張,長方形紙板 360 張,剛好全部用完,問能做成多少個(gè) A 型盒子?則下列結(jié)論 正確的個(gè)數(shù)是(

①甲同學(xué):設(shè) A 型盒子個(gè)數(shù)為 x 個(gè),根據(jù)題意可得: 4x 3 360

②乙同學(xué):設(shè) B 型盒中正方形紙板的個(gè)數(shù)為 m 個(gè),根據(jù)題意可得: 3 4(120 m) 360

A 型盒 72 個(gè)

B 型盒中正方形紙板 48 個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列有四個(gè)結(jié)論:①若,則;

②若,,則的值為

③若的運(yùn)算結(jié)果中不含項(xiàng),則

④若,則可表示為

其中正確的是(填序號(hào))是:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B90°,CD為∠ACB的角平分線,在AC邊上取點(diǎn)E,使DEDB,且∠AED90°.若∠Aα,∠ACBβ,則( 。

A.AED180°﹣αβB.AED180°﹣αβ

C.AED90°﹣α+βD.AED90°+α+β

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9時(shí)BC的長.

查看答案和解析>>

同步練習(xí)冊答案