【題目】我國宋朝數(shù)學家楊輝在他的著作《詳解九章算法》中提出如圖,此表揭示了(a+b)n(n為非負整數(shù))展開式的各項系數(shù)的規(guī)律,例如:(a+b)0=1,它只有一項,系數(shù)為1;(a+b)1=a+b,它有兩項,系數(shù)分別為1,1;(a+b)2=a2+2ab+b2,它有三項,系數(shù)分別為1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數(shù)分別為1,3,3,1;…;根據(jù)以上規(guī)律,(a+b)5展開式共有六項,系數(shù)分別為______,拓展應用:(a﹣b)4=_______.
【答案】1,5,10,10,5,1 a4﹣4a3b+6a2b2﹣4ab3+b4
【解析】
經(jīng)過觀察發(fā)現(xiàn),這些數(shù)字組成的三角形是等腰三角形,兩腰上的數(shù)都是1,從第3行開始,中間的每一個數(shù)都等于它肩上兩個數(shù)字之和,展開式的項數(shù)比它的指數(shù)多1.根據(jù)上面觀察的規(guī)律很容易解答問題.
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.
(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.
故答案為:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.
科目:初中數(shù)學 來源: 題型:
【題目】已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.
(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關系,并說明理由.
(2)結(jié)論應用:① 如圖2,點M,N在反比例函數(shù)(k>0)的圖象上,過點M作ME⊥y軸,過點N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.
② 若①中的其他條件不變,只改變點M,N的位置如圖3所示,請判斷 MN與EF是否平行?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某甜品店用,兩種原料制作成甲、乙兩款甜品進行銷售,制作每份甜品的原料所需用量如下表所示.該店制作甲款甜品份,乙款甜品份,共用去原料2000克.
原料 款式 | 原料 (克) | 原料 (克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求關于的函數(shù)表達式;
(2)已知每份甲甜品的利潤為5元,每份乙甜品的利潤為2元.假設兩款甜品均能全部賣出.若獲得總利潤不少于360元,則至少要用去原料多少克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊中,,將線段沿翻折,得到線段,連結(jié)交于點,連結(jié)、以下說法:①,②,③,④中,正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學決定在“五·四藝術周”為一個節(jié)目制作A、B兩種道具,共80個. 制作的道具需要甲、乙兩種材料組合而成,現(xiàn)有甲種材料700件,乙種材料500件,已知組裝A、B兩種道具所需的甲、乙兩種材料,如下表所示:
甲種材料(件) | 乙種材料(件) | |
A道具 | 6 | 8 |
B道具 | 10 | 4 |
經(jīng)過計算,制作一個A道具的費用為5元,一個B道具的費用為4.5元. 設組裝A種道具x個,所需總費用為y元.
(1)求y與x的函數(shù)關系式,并求出x的取值范圍;
(2)問組裝A種道具多少個時,所需總費用最少,最少費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com