【題目】(8分)如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
【答案】(1)詳見解析;(2)詳見解析.
【解析】
試題分析:(1)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)易∠AEF=∠AFE,即可得AE=AF;(2)作CG∥EM,交BA的延長線于G,已知AC=AG,根據(jù)三角形中位線定理的推論證明BE=EG,再利用三角形的中位線定理即可證得結(jié)論.
試題解析:
(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延長線于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵BM=CM.EM∥CG,
∴BE=EG,
∴BE=BG=(BA+AG)=(AB+AC).
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調(diào)查了若干名學生,根據(jù)調(diào)查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖:
請你根據(jù)以上的信息,回答下列問題:
(1) 本次共調(diào)查了_____名學生,其中最喜愛戲曲的有_____人;在扇形統(tǒng)計圖中,最喜愛體育的對應(yīng)扇形的圓心角大小是______;
(2) 根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛新聞的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x,用配方法把該函數(shù)化為y=a(x﹣h)2+c的形式,并指出函數(shù)圖象的對稱軸和頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的方程x2+2kx﹣1=0的根的情況描述正確的是( )
A.k為任何實數(shù),方程都沒有實數(shù)根
B.k為任何實數(shù),方程都有兩個不相等的實數(shù)根
C.k為任何實數(shù),方程都有兩個相等的實數(shù)根
D.k取值不同實數(shù),方程實數(shù)根的情況有三種可能
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形ABCD的對角線AC=6,BD=8,以點A為圓心,AB為半徑作⊙A,則點C與⊙A的位置關(guān)系是( 。
A.點C在⊙A內(nèi)B.點C在⊙A上C.點C在⊙A外D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,則平均每株盈利減少0.5元.要使每盆的盈利達到15元,每盆應(yīng)多植多少株?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com