【題目】如圖,矩形的對角線相交于點(diǎn),,.
(1)求證:四邊形是菱形;
(2)若,的長為,求四邊形的周長.
【答案】(1)見解析;(2)四邊形OCED的周長為16cm.
【解析】
(1)先判定四邊形OCED是平行四邊形,再根據(jù)矩形的對角線相等且互相平分可得OC=OD,然后根據(jù)鄰邊相等的平行四邊形是菱形即可得證;
(2)根據(jù)矩形的性質(zhì),先判定出△AOB是等邊三角形,再根據(jù)等邊三角形的性質(zhì)求出OA=OB=OC=AB并利用勾股定理求出AB的長度,再根據(jù)菱形的面積公式進(jìn)行計算即可得解.
(1)證明:∵DE∥AC ,CE∥BD,
∴四邊形OCED是平行四邊形.
∵四邊形ABCD是矩形,
∴ AC=BD,
∴OC=OD,
∴四邊形OCED是菱形.
(2)解:∵四邊形ABCD是矩形,
∴∠ABC= 90°.
∴AC=BD.
∴OA=OB=OC
又∵∠CAB=60,
∴△AOB是等邊三角形
∴OA=OB=OC=AB
設(shè)AB=x,
∴AC= 2x,
∴
∴,(舍)
∴OC=4,
由(1)可知四邊形OCED是菱形,故它的周長為16cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∥,BE∥CF,BA⊥,DC⊥,下面給出四個結(jié)論:①BE=CF;②AB=DC;③;
④四邊形ABCD是矩形.其中說法正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)A(6,5),B(2,8),反比例函數(shù)y過點(diǎn)C,過點(diǎn)A作AD∥y軸交雙曲線于點(diǎn)D.
(1)求反比例函數(shù)y的解析式;
(2)動點(diǎn)P在y軸正半軸運(yùn)動,當(dāng)線段PC與線段PD的差最大時,求P點(diǎn)的坐標(biāo);
(3)將Rt△ABC沿直線CO方向平移,使點(diǎn)C移動到點(diǎn)O,求線段AB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的y1=(x<0),y2=(x>0)圖象如圖所示,點(diǎn)P 是y軸負(fù)半軸上一動點(diǎn),過點(diǎn)P作y軸的垂線交圖象于A,B兩點(diǎn),連接OA、OB.當(dāng)點(diǎn)P移動到使∠AOB=90°時,點(diǎn)P的坐標(biāo)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某一城市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨(dú)完成這項工程需要60天,乙隊單獨(dú)完成這項工程需要90天;若由甲隊先做20天,剩下的工程由甲、乙兩隊合做完成.
(1)甲、乙兩隊合作多少天?
(2)甲隊施工一天需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨(dú)完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,上下底面為全等的正六邊形禮盒,其主視圖與左視圖均由矩形構(gòu)成,主視圖中大矩形邊長如圖所示,左視圖中包含兩全等的矩形,如果用彩色膠帶如圖包扎禮盒,所需膠帶長度至少為多少?(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)( )
A. 320cm B. 395.24 cm C. 431.76 cm D. 480 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗中學(xué)捐資購買了一批物資240噸打算扶貧山區(qū),F(xiàn)有甲、乙、丙三種車型可供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示(每輛車均裝滿)
車型 | 甲 | 乙 | 丙 |
汽車運(yùn)載量(噸) | 10 | 16 | 20 |
汽車運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元。求甲、乙兩種車型各多少輛?
(2)為了節(jié)約運(yùn)費(fèi),該公司打算用甲、乙、丙三種車型同時參與運(yùn)送,已知三種車輛總數(shù)為14輛。請求出三種車型分別是多少輛?此時的運(yùn)費(fèi)又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2-2mx+8m的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊且OA≠OB),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)(m,9m),⊙E過A、B、C三點(diǎn)。
(1)求這條拋物線的解析式;
(2)求點(diǎn)E的坐標(biāo);
(3)過拋物線上一點(diǎn)P(點(diǎn)P不與B、C重合)作PQ⊥x軸于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PBQ和△BOC相似?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,正方形CEFG的面積為,點(diǎn)E在CD邊上,點(diǎn)G在BC的延長線上,設(shè)以線段AD和DE為鄰邊的矩形的面積為,且.
⑴求線段CE的長;
⑵若點(diǎn)H為BC邊的中點(diǎn),連結(jié)HD,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com