【題目】某游樂(lè)園要建一個(gè)圓形噴水池,在噴水池的中心安裝一個(gè)大的噴水頭,高度為m,噴出的水柱沿拋物線軌跡運(yùn)動(dòng)(如圖),在離中心水平距離4m處達(dá)到最高,高度為6m,之后落在水池邊緣,那么這個(gè)噴水池的直徑AB為____m.
【答案】20
【解析】
根據(jù)題意在離中心水平距離4m處達(dá)到最高,高度為6m,設(shè)頂點(diǎn)式解析式,求出解析式,再求出與x軸的交點(diǎn)坐標(biāo)即可求出這個(gè)噴水池的直徑AB.
∵噴出的水柱中心4m處達(dá)到最高,高度為6m,
∴拋物線的頂點(diǎn)坐標(biāo)為(4,6)或(4,6),
設(shè)拋物線解析式為或
即這個(gè)噴水頭應(yīng)設(shè)計(jì)的高度為m.
把代入拋物線解析式,解得:
所以,函數(shù)解析式為或
當(dāng)時(shí), 拋物線與x軸的交點(diǎn)坐標(biāo)為(10,0)或(10,0),
∴圓形噴水池的直徑為20m,
故答案為:20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組在探究函數(shù)y=x2﹣2|x|+3的圖象和性質(zhì)時(shí),經(jīng)歷了以下探究過(guò)程:
(1)列表(完成下列表格).
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |
y | … | 6 | 3 | 2 |
|
|
| 2 | 3 | 6 | … |
(2)描點(diǎn)并在圖中畫(huà)出函數(shù)的大致圖象;
(3)根據(jù)函數(shù)圖象,完成以下問(wèn)題:
①觀察函數(shù)y=x2﹣2|x|+3的圖象,以下說(shuō)法正確的有 (填寫正確的序號(hào))
A.對(duì)稱軸是直線x=1;
B.函數(shù)y=x2﹣2|x|+3的圖象有兩個(gè)最低點(diǎn),其坐標(biāo)分別是(﹣1,2)、(1,2);
C.當(dāng)﹣1<x<1時(shí),y隨x的增大而增大;
D.當(dāng)函數(shù)y=x2﹣2|x|+3的圖象向下平移3個(gè)單位時(shí),圖象與x軸有三個(gè)公共點(diǎn);
E.函數(shù)y=(x﹣2)2﹣2|x﹣2|+3的圖象,可以看作是函數(shù)y=x2﹣2|x|+3的圖象向右平移2個(gè)單位得到.
②結(jié)合圖象探究發(fā)現(xiàn),當(dāng)m滿足 時(shí),方程x2﹣2|x|+3=m有四個(gè)解.
③設(shè)函數(shù)y=x2﹣2|x|+3的圖象與其對(duì)稱軸相交于P點(diǎn),當(dāng)直線y=n和函數(shù)y=x2﹣2|x|+3圖象只有兩個(gè)交點(diǎn)時(shí),且這兩個(gè)交點(diǎn)與點(diǎn)P所構(gòu)成的三角形是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三張“黑桃”撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進(jìn)行摸牌游戲,甲先從中隨機(jī)抽取一張,記下數(shù)字再放回洗勻,乙再?gòu)闹须S機(jī)抽取一張.
(1)甲抽到“黑桃”,這一事件是 事件(填“不可能“,“隨機(jī)“,“必然”);
(2)利用樹(shù)狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的開(kāi)口向上頂點(diǎn)為P
(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;
(2)若此拋物線經(jīng)過(guò)(4,一1),當(dāng)-1≤x≤2時(shí),求y的取值范圍(用含a的代數(shù)式表示)
(3)若a=1,且當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁4人聚會(huì),嗎,每人帶了一件禮物,4件禮物從外盒包裝看完全相同,將4件禮物放在一起.
(1)甲從中隨機(jī)抽取一件,則甲抽到不是自己帶來(lái)的禮物的概率是 ;
(2)甲先從中隨機(jī)抽取一件,不放回,乙再?gòu)闹须S機(jī)抽取一件,求甲、乙2人抽到的都不是自己帶來(lái)的禮物的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=5,AB=7,BC=4,點(diǎn)D在邊AB上,且AD=3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上作正方形PDMN,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,正方形PDMN與△ABC重疊部分的面積為S.
(1)用含有t的代數(shù)式表示線段PD的長(zhǎng)
(2)當(dāng)點(diǎn)N落在△ABC的邊上時(shí),求t的值
(3)求S與t的函數(shù)關(guān)系式
(4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),作點(diǎn)N關(guān)于CD的對(duì)稱點(diǎn)N′,當(dāng)N′與△ABC的某一個(gè)頂點(diǎn)所連的直線平分△ABC的面積時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富學(xué)生的課余生活,某校記劃開(kāi)展三種拓展課活動(dòng),分別是“文學(xué)賞析”,“趣味數(shù)學(xué)”,“科學(xué)實(shí)驗(yàn)”等項(xiàng)目,要求每位學(xué)生自主選擇其中一項(xiàng)拓展課參加.隨機(jī)抽取該校各年段部分學(xué)生,對(duì)選擇拓展課的意向進(jìn)行調(diào)査,將調(diào)查的結(jié)果制作成以下統(tǒng)計(jì)圖和不完整的統(tǒng)計(jì)表.
某校被調(diào)查學(xué)生選擇拓展課意向統(tǒng)計(jì)表
選擇意向 | 所占百分比 |
文學(xué)賞析 |
|
趣味數(shù)學(xué) | 35% |
科學(xué)實(shí)驗(yàn) |
|
其它 | 30% |
(1)該校有2000名學(xué)生,請(qǐng)你估計(jì)大約有多少名學(xué)生參加科學(xué)實(shí)驗(yàn)拓展課,并補(bǔ)全統(tǒng)計(jì)表.
(2)該校參加科學(xué)實(shí)驗(yàn)拓展課的學(xué)生隨機(jī)分成A,B,C三個(gè)人數(shù)相同的班級(jí).小慧和小明都參加科學(xué)實(shí)驗(yàn)拓展課,求他們同班級(jí)的概率(畫(huà)樹(shù)狀圖或列表法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點(diǎn)C,交AD于E,CG是⊙F的切線,CG交AD于點(diǎn)G.
(1)求證:CG⊥AD;
(2)填空:
①若△BDA的面積為80,則△BCF的面積為 ;
②當(dāng)∠BAD的度數(shù)為 時(shí),四邊形EFCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com