【題目】在我們認(rèn)識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同有些多邊形邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題

(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸等邊三角形有___________條對稱軸;

(2)觀察下列一組凸多邊形實(shí)線畫出),它們的共同點(diǎn)是只有1條對稱軸其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式請你在圖1-4和圖1-5,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對稱軸的凸五邊形并用實(shí)線畫出所得的凸五邊形;

(3)小明希望構(gòu)造出一個(gè)恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,2中是他沒有完成的圖形,請用實(shí)線幫他補(bǔ)完整個(gè)圖形;

(4)請你畫一個(gè)恰好有3條對稱軸的凸六邊形并用虛線標(biāo)出對稱軸

【答案】(1)1,2,3;(2)答案見解析;(3)答案見解析;(4)答案見解析

【解析】

試題(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行判斷即可;
(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進(jìn)行畫圖即可;
(3)長方形具有兩條對稱軸,在長方形的右側(cè)補(bǔ)出與左側(cè)一樣的圖形,即可構(gòu)造出一個(gè)恰好有2條對稱軸的凸六邊形;
(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對稱軸的凸六邊形.

試題解析:

(1)非等邊的等腰三角形有1條對稱軸,非正方形的長方形有2條對稱軸,等邊三角形有3條對稱軸,

故答案為:1,2,3.

(2)恰好有1條對稱軸的凸五邊形如圖中所示.

(3)恰好有2條對稱軸的凸六邊形如圖所示.

(4)恰好有3條對稱軸的凸六邊形如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(秒),△PBQ的面只為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.

(1)求證:ADBC=APBP.
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.

(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=12,AD=BD=10.點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC△CDE都是等邊三角形.BEACF,ADCEH,

求證:△BCE≌△ACD;

求證:CF=CH;

判斷△CFH的形狀并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為2的正三角形ABO的邊OB在x軸上,將△ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到三角形OA1B1 , 則點(diǎn)A1的坐標(biāo)為( )

A.( ,1)
B.( ,-1)
C.(-1,
D.(2,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請判斷ABEF的位置關(guān)系,并說明理由.

解:   ,理由如下:

ABCD,

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等邊三角形.

(1)如圖,點(diǎn)DAB邊上,點(diǎn)EAC邊上,BDCE,BECD交于點(diǎn)F試判斷BFCF的數(shù)量關(guān)系,并加以證明;

(2)點(diǎn)DAB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)EAC邊上的一個(gè)動(dòng)點(diǎn),且BDCEBECD交于點(diǎn)F.若△BFD是等腰三角形,求∠FBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥市某學(xué)校搬遷,教師和學(xué)生的寢室數(shù)量在增加,若該校今年準(zhǔn)備建造三類不同的寢室,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5.

(1)2015年學(xué)校寢室數(shù)為64個(gè),2017年建成后寢室數(shù)為121個(gè),20152017年的平均增長率;

(2)若建成后的寢室可供600人住宿,求單人間的數(shù)量;

(3)若該校今年建造三類不同的寢室的總數(shù)為180個(gè),則該校的寢室建成后最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線,點(diǎn)為平面上一點(diǎn),連接

1)如圖1,點(diǎn)在直線、之間,當(dāng),時(shí),求

2)如圖2,點(diǎn)在直線、之間左側(cè),的角平分線相交于點(diǎn),寫出之間的數(shù)量關(guān)系,并說明理由.

3)如圖3,點(diǎn)落在下方,的角平分線相交于點(diǎn),有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案