如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.

(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
(1)根據(jù)平行四邊形的性質(zhì)可得∠A=∠C,再結(jié)合∠EDB=∠C、公共角∠E即可證得結(jié)論;
(2)

試題分析:(1)根據(jù)平行四邊形的性質(zhì)可得∠A=∠C,再結(jié)合∠EDB=∠C、公共角∠E即可證得結(jié)論;
(2)根據(jù)平行四邊形的性質(zhì)可得DC=AB,由(1)得△ADE∽△DBE,根據(jù)相似三角形的性質(zhì)可求得BE的長,從而可以求得AB的長,即可得到結(jié)果.
(1)平行四邊形ABCD中,∠A=∠C,
∵∠EDB=∠C,
∴∠A=∠EDB,
又∠E=∠E, 
∴△ADE∽△DBE;
(2)平行四邊形ABCD中,DC=AB,
由(1)得△ADE∽△DBE,
 
 
 
.
點評:平行四邊形的性質(zhì)的應用是初中數(shù)學的重點,是中考常見題,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

兩個全等的直角三角形重疊放在直線l上,如圖(1),AB=6cm,BC=8cm,∠ABC=90°,將Rt△ABC在直線l上左右平移,如圖(2)所示.
(1)求證:四邊形ACFD是平行四邊形;
(2)怎樣移動Rt△ABC,使得四邊形ACFD為菱形;
(3)將Rt△ABC向左平移4cm,求四邊形DHCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,、分別是、的中點,則(   )
A.1∶2B.1∶3C.1∶4D.2∶3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

青年路兩旁原有路燈212盞,相鄰兩盞燈的距離為36米,為節(jié)約用電,現(xiàn)計劃全部更換為新型高效節(jié)能燈,且相鄰兩盞燈的距離變?yōu)?4米,則需更換新型節(jié)能燈      盞.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知點D、E分別在△ABC的邊AB和AC上,DE‖BC,且S△ADE∶S四邊形DBCE=1∶8,
_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,點D、E分別是AB、AC的中點,則下列結(jié)論:①BC=2DE;②△ADE∽△ABC;③.④三角形ADE與梯形DECB的面積比為1:4,其中正確的有【    】

(A)3個          (B)2個       (C)1個          (D)0個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖、分別在的邊、上,要使△AED∽△ABC,應添加條件是            ;(只寫出一種即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖, 在Rt△ABC中,∠C=90º, AC=9,BC=12,動點P從點A開始沿邊AC向點C以每秒1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ. 點P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=__________, PD=___________;
(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;
(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變點Q的速度(勻速運動),使四邊形PDBQ在某一時刻成為菱形,求點Q的速度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD的面積為1,M是AB的中點,則圖中陰影部分的面積是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案