【題目】已知,MON=30°,點A1、A2、A3在射線ON上,點B1、B2B3在射線OM上,A1B1A2、A2B2A3A3B3A4均為等邊三角形,若OA1=a,則A7B7A8的邊長為______

【答案】64a

【解析】

根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出A1B1A2B2A3B3,根據(jù)30°角所對直角邊等于斜邊的一半得到A2B2=2B1A2,進而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…從而得到答案.

∵△A1B1A2是等邊三角形,∴A1B1=A2B1,∠3=4=12=60°,∴∠2=120°.

∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.

又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.

∵∠MON=1=30°,∴OA1=A1B1=a,∴A2B1=a

∵△A2B2A3、△A3B3A4是等邊三角形,∴∠11=10=60°,∠13=60°.

∵∠4=12=60°,∴A1B1A2B2A3B3B1A2B2A3,∴∠1=6=7=30°,∠5=8=90°,∴A2B2=2B1A2B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8aA5B5=16B1A2=16a,以此類推:A7B7=64B1A2=64a

故答案為:64a

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點,點,頂點為點M,過點A軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.

求該二次函數(shù)的解析式及點M的坐標.

過該二次函數(shù)圖象上一點Py軸的平行線,交一邊于點Q,是否存在點P,使得以點P、Q、C、O為頂點的四邊形為平行四邊形,若存在,求出P點坐標;若不存在,說明理由.

N是射線CA上的動點,若點M、C、N所構(gòu)成的三角形與相似,請直接寫出所有點N的坐標直接寫出結(jié)果,不必寫解答過程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個點在第一象限及x軸、y軸上移動,在第一秒鐘,它從原點移動到點(10),然后按照圖中箭頭所示方向移動,即(0,0)→(10)→(1,1)→)(01)→(02)→……,且每秒移動一個單位,那么第2018秒時,點所在位置的坐標是( ).

A. (6,44)B. (38,44)C. (44,38)D. (446)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MNAB于點D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1CA=CB,CD=CE,∠ACB=DCE

1)求證:BE=AD;

2)當α=90°時,取ADBE的中點分別為點P、Q,連接CPCQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:

1×2×3×4+1=________;

2×3×4×5+1=_______;

3×4×5×6+1=_______;

4×5×6×7+1=________

2)觀察上述計算的結(jié)果,指出他們的共同特性;

3)以上特性,對于任意給出的四個連續(xù)自然數(shù)的積與1的和仍具備嗎?試證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關(guān)系如下圖所示,回答下列問題:

(1)分別求出當0≤x≤88<x≤a時,yx之間的關(guān)系式;

(2)求出圖中a的值;

(3)下表是該小學的作息時間,若同學們希望在上午第一節(jié)下課8:20時能喝到不超過40℃的開水,已知第一節(jié)下課前無人接水,請直接寫出生活委員應該在什么時間或時間段接通飲水機電源.(不可以用上課時間接通飲水機電源)

時間

節(jié)次

7:20

到校

7:45~8:20

第一節(jié)

8:30~9:05

第二節(jié)

查看答案和解析>>

同步練習冊答案