【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象經(jīng)過菱形OACD的頂點D和邊AC上的一點E,且CE=2AE,菱形的邊長為8,則k的值為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的y與x的部分對應(yīng)值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結(jié)論:①拋物線的開口向上;②拋物線的對稱軸為直線x=2;③當(dāng)0<x<4時,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤若A(,2),B(,3)是拋物線上兩點,則,其中正確的個數(shù)是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點.
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點 F 為 AD 上一點,AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AN上有一點B,AB=5,tan∠MAN=,點C從點A出發(fā)以每秒3個單位長度的速度沿射線AN運動,過點C作CD⊥AN交射線AM于點D,在射線CD上取點F,使得CF=CB,連結(jié)AF.設(shè)點C的運動時間是t(秒)(t>0).
(1)當(dāng)點C在點B右側(cè)時,求AD、DF的長.(用含t的代數(shù)式表示)
(2)連結(jié)BD,設(shè)△BCD的面積為S平方單位,求S與t之間的函數(shù)關(guān)系式.
(3)當(dāng)△AFD是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京劇臉譜是京劇藝術(shù)獨特的表現(xiàn)形式京劇表演中,經(jīng)常用臉譜象征人物的性格,品質(zhì),甚至角色和命運如紅臉代表忠心耿直,黑臉代表強悍勇猛現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.
(1)請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率(圖案為“紅臉”的兩張卡片分別記為、,圖案為“黑臉”的卡片記為);
(2)若第一次抽出后不放回,請直接寫出求抽出的兩張卡片上的圖案都是“紅臉”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2﹣4ax﹣6(a>0)與x軸交于A,B兩點,且OB=3OA,與y軸交于點C,拋物線的頂點為D,對稱軸與x軸交于點E.
(1)求該拋物線的解析式,并直接寫出頂點D的坐標(biāo);
(2)如圖2,直線y=+n與拋物線交于G,H兩點,直線AH,AG分別交y軸負(fù)半軸于M,N兩點,求OM+ON的值;
(3)如圖1,點P在線段DE上,作等腰△BPQ,使得PB=PQ,且點Q落在直線CD上,若滿足條件的點Q有且只有一個,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,的平分線AE交CD于點F交BC的延長線于點E.
(1)求證:;
(2)連接BF、AC、DE,當(dāng)時,求證:四邊形ACED是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解初中學(xué)校“高效課堂”的有效程度,并就初中生在課堂上是否具有“主動質(zhì)疑”、“獨立思考”、“專注聽講”、“講解題目”等學(xué)習(xí)行為進行評價.為此,該市教研部門開展了一次抽樣調(diào)查, 并將調(diào)查結(jié)果繪制成尚不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖( 如圖所示),請根據(jù)圖中信息解答下列問題:
(1)這次抽樣調(diào)查的樣本容量為 .
(2)在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為 度;
(3)請補充完整條形統(tǒng)計圖;
(4)若該市初中學(xué)生共有萬人,在課堂上具有“獨立思考”行為的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.
(1)如圖1,當(dāng)點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;
(3)如圖3,當(dāng)點M、N分別在CB、DC的延長線上時,若CN=CD=6,設(shè)BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com