【題目】如圖,在邊長為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過程中,則下列結(jié)論:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為 .
其中正確的結(jié)論有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
【答案】D
【解析】解:如圖,
∵動(dòng)點(diǎn)F,E的速度相同,
∴DF=CE,
又∵CD=BC,
∴CF=BE,
在△ABE和△BCF中,
∴△ABE≌△BCF(SAS),故①正確;
∴∠BAE=∠CBF,AE=BF,故②正確;
∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠APB=90°,故③正確;
在△BPE和△BCF中,
∵∠BPE=∠BCF,∠PBE=∠CBF,
∴△BPE∽△BCF,
∴ = ,
∴CFBE=PEBF,
∵CF=BE,
∴CF2=PEBF,故④正確;
∵點(diǎn)P在運(yùn)動(dòng)中保持∠APB=90°,
∴點(diǎn)P的路徑是一段以AB為直徑的弧,
設(shè)AB的中點(diǎn)為G,連接CG交弧于點(diǎn)P,此時(shí)CP的長度最小,
在Rt△BCG中,CG= = = ,
∵PG= AB= ,
∴CP=CG﹣PG= ﹣ = ,
即線段CP的最小值為 ,故⑤正確;
綜上可知正確的有5個(gè),
故選D.
由正方形的性質(zhì)及條件可判斷出①△ABE≌△BCF,即可判斷出②AE=BF,∠BAE=∠CBF,再根據(jù)∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判斷③,由△BPE∽△BCF,利用相似三角形的性質(zhì),結(jié)合CF=BE可判斷④;然后根據(jù)點(diǎn)P在運(yùn)動(dòng)中保持∠APB=90°,可得點(diǎn)P的路徑是一段以AB為直徑的弧,設(shè)AB的中點(diǎn)為G,連接CG交弧于點(diǎn)P,此時(shí)CP的長度最小,最后在Rt△BCG中,根據(jù)勾股定理,求出CG的長度,再求出PG的長度,即可求出線段CP的最小值,可判斷⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班準(zhǔn)備購買大課間活動(dòng)器材呼啦圈和跳繩,已知購買1根跳繩和2個(gè)呼啦圈要35元,購買2根跳繩和1個(gè)呼啦圈要25元.
(1)求每根跳繩、每個(gè)呼啦圈各多少元?
(2)根據(jù)班級實(shí)際情況,需購買跳繩和呼啦圈的總數(shù)量為30,總費(fèi)用不超過300元,但不低于280元,請你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100( +1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點(diǎn)D,測得船C正好在觀測點(diǎn)D的南偏東75°方向上.
(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號,請保留根號).
(2)已知距離觀測點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險(xiǎn)?(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩枚正四面體骰子的各面上分別標(biāo)有數(shù)字1,2,3,4,現(xiàn)在同時(shí)投擲這兩枚骰子,并分別記錄著地的面所得的點(diǎn)數(shù)為a、b.
(1)假設(shè)兩枚正四面體都是質(zhì)地均勻,各面著地的可能性相同,請你在下面表格內(nèi)列舉出所有情形(例如(1,2),表示a=1,b=2),并求出兩次著地的面點(diǎn)數(shù)相同的概率.
b | 1 | 2 | 3 | 4 |
1 | (1,2) | |||
2 | ||||
3 | ||||
4 |
(2)為了驗(yàn)證試驗(yàn)用的正四面體質(zhì)地是否均勻,小明和他的同學(xué)取一枚正四面體進(jìn)行投擲試驗(yàn).試驗(yàn)中標(biāo)號為1的面著地的數(shù)據(jù)如下:
試驗(yàn)總次數(shù) | 50 | 100 | 150 | 200 | 250 | 500 |
“標(biāo)號1”的面著地的次數(shù) | 15 | 26 | 34 | 48 | 63 | 125 |
“標(biāo)號1”的面著地的頻率 | 0.3 | 0.26 | 0.23 | 0.24 |
請完成表格(數(shù)字精確到0.01),并根據(jù)表格中的數(shù)據(jù)估計(jì)“標(biāo)號1的面著地”的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生上學(xué)期參加社區(qū)活動(dòng)的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動(dòng)的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
參加社區(qū)活動(dòng)次數(shù)的頻數(shù)、頻率分布表
根據(jù)以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請估計(jì)該校在上學(xué)期參加社區(qū)活動(dòng)超過6次的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=4,求BC+DE的值.
小明發(fā)現(xiàn),過點(diǎn)E作EF∥DC,交BC延長線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決(如圖2).
(1)請按照上述思路完成小明遇到的這個(gè)問題
(2)參考小明思考問題的方法,解決問題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點(diǎn)G,AC=BF=DF,求∠DGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年為更好地宣傳“開車不喝酒,喝酒不開車”的駕車?yán)砟睿呈幸患覉?bào)社設(shè)計(jì)了如圖的調(diào)查問卷(單選).在隨機(jī)調(diào)查了某市全部10000名司機(jī)中的部分司機(jī)后,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
根據(jù)以上信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中m=;
(2)該市支持選項(xiàng)C的司機(jī)大約有多少人?
(3)若要從該市支持選項(xiàng)C的司機(jī)中隨機(jī)選擇200名,給他們簽訂“永不酒駕”的保證書,則支持該選項(xiàng)的司機(jī)小李被選中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BOD都是等腰直角三角形,∠ACB=∠BDO=90°,且點(diǎn)A在反比例函數(shù)(k>0)的圖像上,若OB2-AB2=10,則k的值為 ( )
A. 10 B. 5 C. 20 D. 2.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com