【題目】如圖,在△ABC,∠C=90°,∠ABC=40°,按以下步驟作圖:

①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑.畫(huà)弧,分別交AB、AC于點(diǎn)E、F;

②分別以點(diǎn)E、F為圓心,大于EF的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)G;

③作射線AG,交BC邊于點(diǎn)D,則∠ADC的度數(shù)為________

【答案】65°

【解析】由題意可知,所作的射線AG是∠BAC的角平分線.

△ABC,∠C=90°,∠ABC=40°,

∴∠BAC=180°-90°-40°=50°,

∴∠CAD=BAC=25°

∴∠ADC=180°-90°-25°=65°.

型】填空
結(jié)束】
13

【題目】如圖所示,已知線段AB,∠α,∠β,分別過(guò)A、B∠CAB=∠α,∠CBA=∠β.(不寫(xiě)作法,保留作圖痕跡)

【答案】答案見(jiàn)解析

【解析】分析:根據(jù)作一個(gè)角等于已知角的方法,分別以A、B為頂點(diǎn),作圖即可.

本題解析:

如圖所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知am2,an3.求am+n的值;

2)已知n為正整數(shù),且x2n7.求7x3n23x22n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AB均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上

1在網(wǎng)格的格點(diǎn)中,AB為邊畫(huà)一個(gè)ABC,使三角形另外兩邊長(zhǎng)為 ;

2若點(diǎn)P在圖中所給網(wǎng)格中的格點(diǎn)上,△APB是等腰三角形,滿足條件的點(diǎn)P共有 個(gè);

3)若將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,寫(xiě)出旋轉(zhuǎn)后點(diǎn)B的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的解題過(guò)程:

用公式法解下列方程:

12x2﹣3x﹣2=0

解:a=___b=___,c=___

b2﹣4ac=___=___0

=____=___

x1=__,x2=___

2x2x=x3

解:整理,得___

a=__,b=___,c=___

b2﹣4ac=___=___

=_____=____,

x1=x2=__

3)(x﹣22=x﹣3

解:整理,得______

a=___,b=___,c=___

b2﹣4ac=___=___0

方程___實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①內(nèi)錯(cuò)角相等;②兩條直線不平行必相交;③過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;④平行于同一條直線的兩條直線互相平行. 其中錯(cuò)誤的有( ).

A.1個(gè);B.2個(gè);C.3個(gè);D.4個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)數(shù)中最小的數(shù)是( 。

A.1B.0C.2D.﹣(﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)棱柱中,一共有八個(gè)面,則這個(gè)棱柱棱的條數(shù)有(

A.18B.15C.12D.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各式配成完全平方式:

①x2+6x+______=(x+____2 ②x2-5x+_____=(x-____2;

③x2+ x+______=(x+____2 ④x2-9x+_____=(x-____2

查看答案和解析>>

同步練習(xí)冊(cè)答案