【題目】矩形一個角的平分線分矩形一邊為2cm3cm兩部分,則這個矩形的面積為(

A.10cm2B.15cm2C.12cm2D.10cm215cm2

【答案】D

【解析】

根據(jù)矩形性質得出AB=CD,AD=BCADBC,由平行線的性質,以及角平分線的定義,即可證得∠ABE=AEB,利用等邊對等角可以證得AB=AE,然后分AE=2cmDE=3cmAE=3cm,DE=2cm兩種情況即可求得矩形的邊長,從而求解.

解:∵四邊形ABCD是矩形,

AB=CD,AD=BC,ADBC
∴∠AEB=CBE,
BE平分∠ABC,
∴∠ABE=CBE
∴∠AEB=ABE,
AB=AE,

AE=2cmDE=3cm時,AD=BC=5cm,AB=CD=AE=2cm
∴矩形ABCD的面積是:2×5=10cm2;
AE=3cmDE=2cm時,AD=BC=5cm,AB=CD=AE=3cm
∴矩形ABCD的面積是:5×3=15cm2
故矩形的面積是:10cm215cm2
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形, AB=AC,D是斜邊BC的中點,E、F分別是ABAC邊上的點,且DEDF

(1)請說明:DE=DF;

(2)請說明:BE2+CF2=EF2;

(3)若BE=6,CF=8,求△DEF的面積(直接寫結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD的對角線相交于點O,∠COE45°,過點CCEBD于點E

1)如圖1,若CB1,求CED的面積;

2)如圖2,過點OOFDB于點O,OFOD,連接FC,點GFC中點,連接GE,求證:DC2GE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先仔細閱讀材料,再嘗試解決問題:我們在求代數(shù)式的最大或最小值時,通過利用公式對式子作如下變形:

,

因為,

所以,

因此有最小值2

所以,當時,,的最小值為2.

同理,可以求出的最大值為7.

通過上面閱讀,解決下列問題:

1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;

2)求代數(shù)式的最大或最小值,并寫出對應的的取值;

3)求代數(shù)式的最大或最小值,并寫出對應的、的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本)

(1)寫出每月的利潤w(萬元)與銷售單價x(元)之間的函數(shù)關系式;

(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?

(3)當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是ΔABC內一點,連接OB、OC,并將ABOB、OC、AC的中點、依次連結,得到四邊形

1)求證:四邊形是平行四邊形;

2)若的中點,OM=5,∠OBC與∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)先化簡,然后從-2≤x≤2的范圍內選取一個合適的整數(shù)作為x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結論:足球距離地面的最大高度為足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習冊答案