如下圖,在直角坐標(biāo)系的第一象限內(nèi),△AOB是邊長為2的等邊三角形,設(shè)直線l:x=t(0≤t≤2)截這個(gè)三角形所得位于直線左側(cè)的圖形(陰影部分)的面積為f(t),則函數(shù)s=f(t)的圖象只可能是t大于等于0小于等于1時(shí),函數(shù)為Y=3根號x方除以2  圖線不應(yīng)為直線( 。
分析:等邊△AOB中,l∥y軸,所以很容易求得∠OCB=30°;進(jìn)而證明OD=t,CD=
3
t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.
解答:解:①∵l∥y軸,△AOB為等邊三角形,

∴∠OCB=30°,
∴OD=t,CD=
3
t;
∴S△OCD=
1
2
×OD×CD
=
3
2
t2(0≤t≤1),
即S=
3
2
t2(0≤t≤1).
故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,1]、開口向上的二次函數(shù)圖象;
②∵l∥y軸,△AOB為等邊三角形

∴∠CBD=30°,
∴BD=2-t,CD=
3
(2-t);
∴S△BCD=
1
2
×BD×CD
=
3
2
(2-t)2(0≤t≤1),
即S=
3
-
3
2
(2-t)2(0≤t≤1).
故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇1,2]、開口向下的二次函數(shù)圖象;
故選C.
點(diǎn)評:本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的性質(zhì)(帶解析) 題型:單選題

如下圖,在直角坐標(biāo)系的第一象限內(nèi),△AOB是邊長為2的等邊三角形,設(shè)直線l:x=t(0≤t≤2)截這個(gè)三角形所得位于直線左側(cè)的圖形(陰影部分)的面積為f(t),則函數(shù)s=f(t)的圖象只可能是t大于等于0小于等于1時(shí),函數(shù)為Y=3根號x方除以2 圖線不應(yīng)為直線( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省淮安市淮陰中學(xué)高一分班考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如下圖,在直角坐標(biāo)系的第一象限內(nèi),△AOB是邊長為2的等邊三角形,設(shè)直線l:x=t(0≤t≤2)截這個(gè)三角形所得位于直線左側(cè)的圖形(陰影部分)的面積為f(t),則函數(shù)s=f(t)的圖象只可能是t大于等于0小于等于1時(shí),函數(shù)為Y=3根號x方除以2  圖線不應(yīng)為直線( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的性質(zhì)(解析版) 題型:選擇題

如下圖,在直角坐標(biāo)系的第一象限內(nèi),△AOB是邊長為2的等邊三角形,設(shè)直線l:x=t(0≤t≤2)截這個(gè)三角形所得位于直線左側(cè)的圖形(陰影部分)的面積為f(t),則函數(shù)s=f(t)的圖象只可能是t大于等于0小于等于1時(shí),函數(shù)為Y=3根號x方除以2 圖線不應(yīng)為直線( 。

A.    B.    C.    D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如下圖,在直角坐標(biāo)系中,M為軸上一點(diǎn),⊙M交軸于A、B兩點(diǎn),交軸于C、D兩點(diǎn),P為BC上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD,A(-1,0),如(1,0)。

(1)求C點(diǎn)的坐標(biāo);

(2)當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),線段AQ的長度是否改變?若不變,請求其值;若改變請說明理由。

查看答案和解析>>

同步練習(xí)冊答案