【題目】(1)過點CAB的平行線CD

(2)過點CAB的垂線,垂足為E;

(3)線段CE的長度是點C到直線__________的距離;

(4)連接CACB,在線段CA、CB、CE中,線段__________最短,理由:______

【答案】(1)見解析;(2)見解析;(3)AB;(4) CE,點到直線的距離垂線段最短.

【解析】

(1)過點C直接畫出AB平行線即可;

(2)過點C AB作垂線即可,注意要標(biāo)上垂直符號;

(3)由點C到直線AB的距離是指點C到直線AB的垂線段CE的長度,據(jù)此即可解題;

(4)由點到直線的距離垂線段最短可知,CE最短.

解:(1) 過點C直接畫出AB平行線,如下圖中紅色線所示;

(2) 過點C AB作垂線,標(biāo)上垂直符號,如下圖中藍(lán)色線所示:

(3)由點到直線的距離的定義知:

C到直線AB的距離是垂線段CE的長度.

故答案為:AB.

(4) 由點到直線的距離垂線段最短可知垂線段CE最短.

故答案為:CE,點到直線的距離垂線段最短.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,圓錐的母線長6cm,底面半徑是3cm,在B處有一只螞蟻,在AC中點P處有一顆米粒,螞蟻從B爬到P處的最短距離是( )

A.3 cm
B.3 cm
C.9cm
D.6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y1= x+b的圖象l與二次函數(shù)y2=﹣x2+mx+b的圖象C′都經(jīng)過點B(0,1)和點C,且圖象C′過點A(2﹣ ,0).

(1)求二次函數(shù)的最大值;
(2)設(shè)使y2>y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程 =0的根,求a的值;
(3)若點F、G在圖象C′上,長度為 的線段DE在線段BC上移動,EF與DG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時,在x軸上求點P,使PD+PE最小,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠B=45°,則隧道開通后,汽車從A地到B地比原來少走千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC中∠BAC=90°,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將ADC繞點A順時針旋轉(zhuǎn)90°后,得AFB,連接EF,下列結(jié)論:①△AED≌△AEF;②△ABC的面積等于四邊形AFBD的面積;③BE+DC=DE;BE2+DC2=DE2;⑤∠DAC=22.5°,其中正確的是( 。

A. ①②④B. ③④⑤C. ①③④D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結(jié)果保留小數(shù)點后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠C90°,BE平分∠ABC,DF平分∠CDA

(1)求證:BEDF;

(2)若∠ABC56°,求∠ADF的大。

查看答案和解析>>

同步練習(xí)冊答案