【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE

(1)求證:BD=EC;

(2)若∠E=50°,求∠BAO的大小.

【答案】1)見解析(240°

【解析】試題分析:(1)根據(jù)菱形的對邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對邊相等即可得證;

2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計算即可得解.

試題解析:(1)證明:菱形ABCD

∴AB=CD,AB∥CD,

∵BE=AB

∴BE=CD,BE∥CD

四邊形BECD是平行四邊形,

∴BD=EC;

2)解:平行四邊形BECD

∴BD∥CE,

∴∠ABO=∠E=50°,

菱形ABCD

∴ACBD,

∴∠BAO=90°﹣∠ABO=40°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,則∠ACB的度數(shù)為   

若∠ACB=140°,則∠DCE的度數(shù)為   

(2)(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.

(3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的相伴方程.

1)在方程①,②,③中,寫出是不等式組的相伴方程的序號 .

2)寫出不等式組的一個相伴方程,使得它的根是整數(shù): .

3)若方程都是關于的不等式組的相伴方程,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)學校組織學生參加綜合實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進價為120元,為尋求合適的銷售價格進行了4天的試銷,試銷情況如下表所示:

第1天

第2天

第3天

第4天

售價x(元/雙)

150

200

250

300

銷售量y(雙)

40

30

24

20

(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關系?請求出這個函數(shù)關系式;

(2)若商場計劃每天的銷售利潤為3000元,則其單價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F是正方形ABCD的對角線AC上的兩點,AC8AECF1,則四邊形BEDF的周長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BC6cm,點E從點D出發(fā)沿DA邊運動到點A,點F從點B出發(fā)沿BC邊向點C運動,點E的運動速度為2cm/s,點F的運動速度為lcm/s,它們同時出發(fā),設運動的時間為t秒,當t為何值時,EFAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AD平分∠BAC,DEABE,下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=BAC;④BE=DE;⑤SBDESACD=BDAC,其中正確的個數(shù)(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列四個關于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

同步練習冊答案