【題目】如圖,拋物線 與直線 交于A、B兩點,點A在x軸上,點B的橫坐標是2.點P在直線AB上方的拋物線上,過點P分別作PC∥y軸、PD∥x軸,與直線AB交于點C、D,以PC、PD為邊作矩形PCQD,設(shè)點Q的坐標為(m,n).
(1)點A的坐標是 , 點B的坐標是;
(2)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(3)求m與n之間的函數(shù)關(guān)系式(不要求寫出自變量n的取值范圍);
(4)請直接寫出矩形PCQD的周長最大時n的值.
【答案】
(1)(﹣2,0);(2,2)
(2)
解:由題意,得 ,
解得
所以,這條拋物線所對應(yīng)的函數(shù)關(guān)系式為y=﹣ x2+ x+3;
(3)
解:∵點Q的坐標為(m,n),
∴ x+1=n,
解得x=2n﹣2,
所以,點C的坐標為(2n﹣2,n),
點D的坐標為(m, m+1),
∴點P的坐標為(2n﹣2, m+1),
將(2n﹣2, m+1)代入y=﹣ x2+ x+3,得﹣ ×(2n﹣2)2+ ×(2n﹣2)+3= m+1,
整理得,m=﹣4n2+10n﹣2,
所以,m,n之間的函數(shù)關(guān)系式是m=﹣4n2+10n﹣2;
(4)
解:∵C(2n﹣2,n),P(2n﹣2, m+1),Q(m,n),
∴PC= m+1﹣n,CQ=m﹣(2n﹣2)=m﹣2n+2,
∴矩形PCQD的周長=2( m+1﹣n+m﹣2n+2),
=3m﹣6n+6,
=3(﹣4n2+10n﹣2)﹣6n+6,
=﹣12n2+24n,
=﹣12(n﹣1)2+12,
∴當(dāng)n=1時,矩形PCQD的周長最大.
【解析】解:(1)令y=0,則 x+1=0,
解得x=﹣2,
所以,點A(﹣2,0),
∵點B的橫坐標是2,
∴y= ×2+1=2,
∴B(2,2);
【考點精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,∠BAC=90,AD⊥BC于D,∠ABC的平分線分別交AC、AD于E、F兩點,M為EF的中點,延長AM交BC于點N,連接DM.下列結(jié)論:①AE=AF;②AM⊥EF;③AF=DF;④DF=DN,其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時,設(shè)所給方程的兩個根分別為x1和x2 , 求 + 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,點D在OC的延長線上,sinB= ,∠CAD=30°.
(1)求證:AD是⊙O的切線;
(2)若OD⊥AB,BC=5,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)了一種新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時時血液中含藥量最高,達每毫升8微克(1000微克=1毫克),接著逐步衰減,10小時時血液中含藥量為每毫升4微克,每毫升血液中含藥量y(微克),隨時間x(小時)的變化如圖所示.當(dāng)成人按規(guī)定劑量服藥后:
(1)求y與x之間的解析式;
(2)如果每毫升血液中含藥量不低于3微克或3微克以上時,在治療疾病時是有效的,那么這個有效時間是多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,點E在正方形ABCD的BC邊上,BF⊥AE于點F,DG⊥AE于點G.可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C在∠MAN的邊AM、AN上,點E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊B上.CD=2BD.點E, F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年4月30日,蘇州吳江蠶種全部發(fā)放完畢,共計發(fā)放蠶種6460張(每張上的蠶卵有200粒左右),涉及6個鎮(zhèn),各鎮(zhèn)隨即開始孵化蠶種,小李所記錄的蠶種孵化情況如表所示,則可以估計蠶種孵化成功的概率為( )
累計蠶種孵化總數(shù)/粒 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 |
孵化成功數(shù)/粒 | 181 | 362 | 541 | 718 | 905 | 1077 | 1263 |
A.0.95
B.0.9
C.0.85
D.0.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com