【題目】如圖,正方形ABCD的邊長為4,延長CB至M,使BM=2,連接AM,BN⊥AM于N,O是AC、BD的交點,連接ON,則ON的長為

【答案】
【解析】解:∵AB=4,BM=2,
∴AM= =2 ,
∵∠ABM=90°,BN⊥AM,
∴△ABN∽△BNM∽△AMB,
∴AB2=AN×AM,BM2=MN×AM,
∴AN= ,MN= ,
∵AB=4,CD=4,
∴AC=4 ,
∴AO=2
= = ,且∠CAM=∠NAO
∴△AON∽△AMC,
= ,即 = ,
∴ON=
所以答案是:

【考點精析】掌握勾股定理的概念和正方形的性質(zhì)是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF

(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關系?請說明理由

(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】進入冬季,我市空氣質(zhì)量下降,多次出現(xiàn)霧霾天氣商場根據(jù)市民健康需要,代理銷售一種防塵口罩,進貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包若供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務

1試確定周銷售量y與售價x元/包之間的函數(shù)關系式;

2試確定商場每周銷售這種防塵口罩所獲得的利潤w與售價x元/包之間的函數(shù)關系式,并直接寫出售價x的范圍;

3當售價x元/包定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 與x軸相交于點A、B,與y軸相交于點C,拋物線對稱軸與x軸相交于點M,

(1)求△ABC的面積;
(2)若p是x軸上方的拋物線上的一個動點,求點P到直線BC的距離的最大值;
(3)若點P在拋物線上運動(點P異于點A),當∠PCB=∠BCA時,求直線PC的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABBE于點B,DEBE于點E.

(1)若∠A=D,AB=DE,則ABCDEF全等的理由是____

(2)若∠A=D,BC=EF,則ABCDEF全等的理由是_________;

(3)AB=DE,BC=EF,則ABCDEF全等的理由是_______

(4)AB=DE,AC=DF,則ABCDEF全等的理由是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在出行中,主動采用能降低二氧化碳排放量的交通方式,謂之“低碳出行”.明明一家積極響應政府“綠色山城,低碳出行”的號召,今年2月﹣5月明明一家減少了駕車出行,他們將2月﹣5月駕車行駛的里程統(tǒng)計后繪制成以下兩幅不完整的統(tǒng)計圖:

(1)扇形統(tǒng)計圖中x= , 并補全折線統(tǒng)計圖;
(2)某中學也積極參與“綠色山城,低碳出行”活動中,決定從4名廣播社骨干成員中(其中兩名男生,兩名女生)選拔兩名同學去演講宣傳,請用畫樹形圖或列表的方法求所選出的兩名同學恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1如圖,在平面直角坐標系中,請畫出ABC關于y軸對稱的ABC,并寫出A,B,C三點的坐標;(其中A,B,C分別是A,B,C的對應點,不寫畫法

2ABC的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A﹣2,2,B﹣3,﹣2

1若點D與點A關于y軸對稱,則點D的坐標為

2將點B先向右平移5個單位再向上平移1個單位得到點C,則點C的坐標為

3A,B,C,D組成的四邊形ABCD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,﹣4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請直接寫出旋轉(zhuǎn)中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案