若把函數(shù)y=x的圖象用Ex,x)記,函數(shù)y=2x+1的圖象用Ex,2x+1)記,……則Ex,)圖象上的最低點是__    
(1,2)

試題分析:由題意可知此時要求滿足在最小,所以需要化簡分析可知,

故最低點是(1,2)
點評:本題屬于對函數(shù)最值的基本公式和函數(shù)最值的理解和運用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:是方程的兩個實數(shù)根,且,拋物線的圖像經(jīng)過點A()、B().

(1)求這個拋物線的解析式;
(2) 設(shè)(1)中拋物線與軸的另一交點為C,拋物線的頂點為D,
試求出點CD的坐標和△BCD的面積;
(3) P是線段OC上的一點,過點PPH軸,與拋物線交于H點,
若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:y=ax2+bx+1的頂點坐標為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點D交y軸于點A,交拋物線C2于點B,拋物線C2的頂點為P,求△DBP的面積;
(3)如圖2,連接AP,過點B作BC⊥AP于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC·(AC+EC)為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列二次函數(shù)中,頂點坐標是(2,-3)的函數(shù)解析式為(   )
A.y=(x-2)2+3 B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線與x軸兩交點分別是(-1,0),(3,0)另有一點(0,-3)也在圖象上,則該拋物線的關(guān)系式________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,將∠ABC對折,使點C的對應(yīng)點H恰好落在直線AB上,折痕交AC于點O,以點O為坐標原點,AC所在直線為x軸建立平面直角坐標系

(1)求過A、B、O三點的拋物線解析式;
(2)若在線段AB上有一動點P,過P點作x軸的垂線,交拋物線于M,設(shè)PM的長度等于d,試探究d有無最大值,如果有,請求出最大值,如果沒有,請說明理由.
(3)若在拋物線上有一點E,在對稱軸上有一點F,且以O(shè)、A、E、F為頂點的四邊形為平行四邊形,試求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是椒江某公園一圓形噴水池,水流在各方向沿形狀相同的拋物線落下。建立如圖所示的坐標系,如果噴頭所在處A(0,1.25),水流路線最高處B(1,2.25),求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
我們知道,一次函數(shù)ykxb的圖象是一條直線,而ykxb經(jīng)過恒等變形可化為直線的另一種表達形式:AxBxC=0(A、B、C是常數(shù),且A、B不同時為0).如圖1,點Pm,n)到直線lAxBxC=0的距離(d)計算公式是:d 

例:求點P(1,2)到直線y x的距離d時,先將y x化為5x-12y-2=0,再由上述距離公式求得d  
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線yx2-4x+5上的一點M(3,2).

(1)求點M到直線AB的距離.
(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標及△PAB面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的函數(shù)解析式為yax2b x-3ab<0),若這條拋物線經(jīng)過點(0,-3),方程ax2b x-3a=0的兩根為x1,x2,且|x1x2|=4.
⑴求拋物線的頂點坐標.
⑵已知實數(shù)x>0,請證明x≥2,并說明x為何值時才會有x=2.

查看答案和解析>>

同步練習(xí)冊答案