【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,∠ADE=∠CDF.
(1)求證:AE=CF;
(2)連接DB交EF于點O,延長OB至G,使OG=OD,連接EG,F(xiàn)G,判斷四邊形DEGF是否是菱形,并說明理由.
【答案】(1)證明見解析;(2)四邊形DEGF是菱形.理由見解析.
【解析】試題分析:(1)根據(jù)正方形的性質可得AD=CD,∠A=∠C=90°,然后利用“角邊角”證明△ADE和△CDF全等,根據(jù)全等三角形對應邊相等可得AE=CF;
(2)求出BE=BF,再求出DE=DF,再根據(jù)到線段兩端點距離相等的點在線段的垂直平分線可得BD垂直平分EF,然后根據(jù)對角線互相垂直平分的四邊形是菱形證明.
試題解析:(1)證明:在正方形ABCD中,AD=CD,∠A=∠C=90°,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF;
(2)四邊形DEGF是菱形.
理由如下:在正方形ABCD中,AB=BC,
∵AE=CF,
∴AB﹣AE=BC﹣CF,
即BE=BF,
∵△ADE≌△CDF,
∴DE=DF,
∴BD垂直平分EF,
又∵OG=OD,
∴四邊形DEGF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)在網(wǎng)購越來越多地成為人們的一種消費方式,剛剛過去的2014年的“雙11”網(wǎng)上促銷活動中,天貓和淘寶的支付交易額突破57000000000元,將57000000000元用科學記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等腰直角三角形,BC=AC,直角頂點C在x軸上,一角頂點B在y軸上.
(1)如圖①若AD⊥x軸,垂足為點D.點C坐標是(﹣1,0),點B的坐標是(0,2),求A點的坐標.
(2)如圖②,直角邊BC在兩坐標軸上滑動,若y軸恰好平分∠ABC,AC與y軸交于點D,過點A作AE⊥y軸于E,求證:BD=2AE.
(3)如圖③,直角邊BC在兩坐標軸上滑動,使點A在第四象限內(nèi),過A點作AF⊥y軸于F,在滑動的過程中,兩個結論:① 為定值;② 為定值,只有一個結論成立,請你判斷正確的結論并求出定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:在四邊形ABCD(圖2)中,取對角線BD的中點O,連接OA、OC.得折線AOC,再過點O作OE∥AC交CD于E,則直線AE即為四邊形ABCD的一條“好線”.
(1)如圖(1),試說明中線AD平分△ABC的面積;
(2)如圖(2),請你探究四邊形ABCO的面積和四邊形ABCD面積的關系,并說明理由;
(3)解:在圖(2)中,請你說明直線AE是四邊形ABCD的一條“好線”;
(4)如圖(3),若AE為一條“好線”,F(xiàn)為AD邊上的一點,請作出四邊形ABCD經(jīng)過F點的“好線”,并對你的畫圖作適當說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了培養(yǎng)學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前 ,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,根據(jù)統(tǒng)計圖所提供的信息,回答下列問題:
(1)本次調查共抽查了 名學生,兩幅統(tǒng)計圖中的m= ,n= .
(2)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?
(3)學校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機選送2人參賽,求選送的兩名參賽學生為1男1女的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com