【題目】雷達(dá)二維平面定位的主要原理是:測量目標(biāo)的兩個(gè)信息―距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為,目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活中,有人喜歡把傳送的便條折成“”形狀,折疊過程按圖①、②、③、④的順序進(jìn)行(其中陰影部分表示紙條的反面):
如果由信紙折成的長方形紙條(圖①)長為2 6 厘米,分別回答下列問題:
(1)如果長方形紙條的寬為2厘米,并且開始折疊時(shí)起點(diǎn)M與點(diǎn)A的距離為3厘米,那么在圖②中,BE=_____厘米; 在圖④中,BM=______厘米.
(2)如果長方形紙條的寬為x厘米,現(xiàn)不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點(diǎn)P的長度相等,即最終圖形是軸對稱圖形,試求在開始折疊時(shí)起點(diǎn)M與點(diǎn)A的距離(結(jié)果用x表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以O(0,0)、A(1,-1)、B(2,0)為頂點(diǎn),構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形第四個(gè)頂點(diǎn)坐標(biāo)的是( 。
A. (3,-1) B. (-1,-1) C. (1,1) D. (-2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】9歲的小芳身高1.36米,她的表姐明年想報(bào)考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對北京有所了解.他們四人7月31日下午從蘇州出發(fā),1日到4日在北京旅游,8月5日上午返回蘇州.
蘇州與北京之間的火車票和飛機(jī)票價(jià)如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價(jià)票;飛機(jī) (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價(jià)票.他們往北京的開支預(yù)計(jì)如下:
住宿費(fèi) (2人一間的標(biāo)準(zhǔn)間) | 伙食費(fèi) | 市內(nèi)交通費(fèi) | 旅游景點(diǎn)門票費(fèi) (身高超過1.2米全票) |
每間每天x元 | 每人每天100元 | 每人每天y元 | 每人每天120元 |
假設(shè)他們四人在北京的住宿費(fèi)剛好等于上表所示其他三項(xiàng)費(fèi)用之和,7月31日和8月5日合計(jì)按一天計(jì)算,不參觀景點(diǎn),但產(chǎn)生住宿、伙食、市內(nèi)交通三項(xiàng)費(fèi)用.
(1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;
(2)他們往返都坐飛機(jī) (成人票五五折),其他開支不變,至少要準(zhǔn)備多少元?
(3)他們?nèi)r(shí)坐火車,回來坐飛機(jī) (成人票五五折),其他開支不變,準(zhǔn)備了14000元,是否夠用?如果不夠,他們準(zhǔn)備不再增加開支,而是壓縮住宿的費(fèi)用,請問他們預(yù)定的標(biāo)準(zhǔn)間房價(jià)每天不能超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
已知:如圖,與互補(bǔ),,
求證:
證明:與互補(bǔ)
即,(已知)
// ( )
.( )
又,(已知)
,即.(等式的性質(zhì))
// (內(nèi)錯(cuò)角相等,兩直線平行)
.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.
你知道怎樣迅速準(zhǔn)確的計(jì)算出結(jié)果嗎?請你按下面的問題試一試:
①,,又,
,
能確定59319的立方根是個(gè)兩位數(shù).
②59319的個(gè)位數(shù)是9,又,
能確定59319的立方根的個(gè)位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個(gè)數(shù)110592,按這種方法求立方根,請完成下列填空.
①它的立方根是 位數(shù).
②它的立方根的個(gè)位數(shù)是 .
③它的立方根的十位數(shù)是 .
④110592的立方根是 .
(2)請直接填寫結(jié)果:
① ;
② ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當(dāng)EF與AB相交時(shí),若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當(dāng)EF與CD相交時(shí),且∠EAB=90°,請你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是( )
A. 15和0.125 B. 15和0.25 C. 30和0.125 D. 30和0.25
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com