若直線l:y=kx+b經(jīng)過(guò)不同的三點(diǎn)A(m,n),B(n,m),C(m-n,n-m),則該直線經(jīng)過(guò)( 。┫笙蓿
A.二、四B.一、三C.二、三、四D.一、三、四
根據(jù)題意得:
mk+b=n               (1)
nk+b=m               (2)
(m-n)k+b=n-m        (3)
由(1)-(2),得(m-n)k=n-m.
結(jié)合(3)可得b=0,那么此函數(shù)為正比例函數(shù),兩邊都除以m-n,得k=-1所以此正比例函數(shù)過(guò)的是二四象限.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是位于該二次函數(shù)對(duì)稱軸右邊圖象上不與頂點(diǎn)重合的任意一點(diǎn),試比較精英家教網(wǎng)銳角∠PCO與∠ACO的大。ú槐刈C明),并寫出此時(shí)點(diǎn)P的橫坐標(biāo)xp的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、若直線l:y=kx+b與直線y=2x平行且經(jīng)過(guò)點(diǎn)(2,-1),則直線l的解析式為
y=2x-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過(guò)點(diǎn)A和點(diǎn)B的圓與y軸相切于點(diǎn)C(0,2)?若存在,求出m的值;若不存在,試說(shuō)明理由;
(Ⅳ)若直線l:y=kx+b過(guò)點(diǎn)F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點(diǎn),且使
PF
FQ
=
1
2
,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,其頂點(diǎn)的橫坐標(biāo)為1,且過(guò)點(diǎn)(2,3)和(-3,-12).
(1)求此二次函數(shù)的表達(dá)式;
(2)若直線l:y=kx(k≠0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得△BOD∽△BAC?若存在,求出該直線的函數(shù)表達(dá)式及點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案