【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某中學(xué)舉辦了文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不扣分,賽后對全體參賽選手的答題情況進行了相關(guān)統(tǒng)計,整理并繪制成如下圖表:
組別 | 分數(shù)段 | 頻數(shù)(人) | 頻率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
請根據(jù)以圖表信息,解答下列問題:
(1)表中m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)在得分前5名的同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)參加區(qū)級的比賽,用樹狀圖或列表法求選出的兩名同學(xué)恰好是一男一女的概率.
【答案】
(1)120;0.2
(2)補全的頻數(shù)分布直方圖如右圖所示,
(3)如圖,所有結(jié)果如下:
∵共有20種等可能的結(jié)果,兩名主持人恰為一男一女的有12種情況,
∴則P(恰好選到一男一女)= = .
故答案為:120,0.2.
【解析】解:(1)由表格可得, 全體參賽的選手人數(shù)有:30÷0.1=300,
則m=300×0.4=120,n=60÷300=0.2.
【考點精析】掌握頻數(shù)分布直方圖和列表法與樹狀圖法是解答本題的根本,需要知道特點:①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖);當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點P是AC延長線上一點,且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點E,AB=1,CE:CP=2:3,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進了A,B兩種家用電器,相關(guān)信息如下表:
家用電器 | 進價(元/件) | 售價(元/件) |
A | m+200 | 1800 |
B | m | 1700 |
已知用6000元購進的A種電器件數(shù)與用5000元購進的B種電器件數(shù)相同.
(1)求表中m的值.
(2)由于A,B兩種家用電器熱銷,該商店計劃用不超過23000元的資金再購進A,B兩種電器總件數(shù)共20件,且獲利不少于13300元.請問:有幾種進貨方案?哪一種方案才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AD∥BC,∠B=∠C=60°,P、Q同時從B出發(fā),以每秒1單位長度分別沿B﹣A﹣D﹣C和B﹣C﹣D方向運動至相遇時停止,設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2所示,則下列結(jié)論錯誤的個數(shù)( )
①當(dāng)t=4秒時,S=4 ②AD=4
③當(dāng)4≤t≤8時,S=2 t ④當(dāng)t=9秒時,BP平分四邊形ABCD的面積.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),…,按此方式依次操作,則第6個正六邊形的邊長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= 的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=9,S△ABC= ,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當(dāng)Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設(shè)點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com