【題目】若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 =﹣3有正整數(shù)解,則滿足條件的a的值之積為( )
A.28
B.﹣4
C.4
D.﹣2

【答案】B
【解析】解:不等式組整理得: ,

由不等式組無解,得到3a﹣2≤a+2,

解得:a≤2,

分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,

由分式方程有正整數(shù)解,得到x= ,即a+3=1,2,5,10,

解得:a=﹣2,﹣1,2,7,a的值,

綜上,滿足條件a的為﹣2,﹣1,2,之積為﹣4,

所以答案是:B

【考點精析】解答此題的關(guān)鍵在于理解分式方程的解的相關(guān)知識,掌握分式方程無解(轉(zhuǎn)化成整式方程來解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無解);解的正負情況:先化為整式方程,求整式方程的解,以及對一元一次不等式組的解法的理解,了解解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點A、C在雙曲線y1=﹣ 上,B、D在雙曲線y2= 上,k1=2k2(k1>0),AB∥y軸,SABCD=24,則k1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,E,F(xiàn)分別在AB,CD上,且BE=DF,EFBD相交于點O,連結(jié)AO.若∠CBD=35°,則∠DAO的度數(shù)為( 。

A. 35° B. 55° C. 65° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位同學(xué)進行足球傳球訓(xùn)練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳三次.
(1)求三次傳球后,球回到甲腳下的概率;
(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點C是線段AB上的一點,點D是線段AB的中點,點E是線段BC的中點.

1)當(dāng)AC=8,BC=6時,求線段DE的長度;

2)當(dāng)AC=m,BC=nmn)時,求線段DE的長度;

3)從(1)(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律?請直接寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB,C,D在同一條直線上,點E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦紅歌伴我成長歌詠比賽活動,參賽同學(xué)的成績分別繪制成頻數(shù)分布表和頻數(shù)分布直方圖(均不完整)如圖

分數(shù)段

頻數(shù)

頻率

80≤x<85

9

0.15

85≤x<90

m

0.45

90≤x<95

95≤x<100

6

n

(1)求m,n的值分別是多少;

(2)請在圖中補全頻數(shù)分布直方圖;

(3)比賽成績的中位數(shù)落在哪個分數(shù)段?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設(shè)計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時,四邊形AMDN是矩形;當(dāng)AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

同步練習(xí)冊答案