【題目】如圖,OABC是平行四邊形,對(duì)角線OB在y軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線的一支上,分別過點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:

;②陰影部分面積是(k1+k2);③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱.其中正確的結(jié)論是(

A.①②③ B.②④ C.①③④ D.①④

【答案】D.

【解析】

試題解析:作AE⊥y軸于E,CF⊥y軸于F,如圖,

∵四邊形OABC是平行四邊形,

∴S△AOB=S△COB,

∴AE=CF,

∴OM=ON,

∵S△AOM=|k1|=OMAM,S△CON=|k2|=ONCN,

,故①正確;

∵S△AOM=|k1|,S△CON=|k2|,

∴S陰影部分=S△AOM+S△CON=(|k1|+|k2|),

而k1>0,k2<0,

∴S陰影部分=(k1-k2),故②錯(cuò)誤;

當(dāng)∠AOC=90°,

∴四邊形OABC是矩形,

∴不能確定OA與OC相等,

而OM=ON,

∴不能判斷△AOM≌△CNO,

∴不能判斷AM=CN,

∴不能確定|k1|=|k2|,故③錯(cuò)誤;

若OABC是菱形,則OA=OC,

而OM=ON,

∴Rt△AOM≌Rt△CNO,

∴AM=CN,

∴|k1|=|k2|,

∴k1=-k2,

∴兩雙曲線既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱,故④正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD,點(diǎn)C在點(diǎn)D的右側(cè),ABCADC的平分線交于點(diǎn)E(不與B,D點(diǎn)重合).ABCn°,ADC=80°.

(1)若點(diǎn)B在點(diǎn)A的左側(cè),求BED的度數(shù)(用含n的代數(shù)式表示);

(2)將(1)中的線段BC沿DC方向平移,當(dāng)點(diǎn)B移動(dòng)到點(diǎn)A右側(cè)時(shí),請(qǐng)畫出圖形并判斷BED的度數(shù)是否改變.若改變,請(qǐng)求出BED的度數(shù)(用含n的代數(shù)式表示);若不變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的外角和等于360°,則這個(gè)多邊形的邊數(shù)為(

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是江津區(qū)某一天的氣溫隨時(shí)間變化的圖象,根據(jù)圖象回答:在這一天中:

(1)氣溫T()是不是時(shí)間t(時(shí))的函數(shù)。

(2)12時(shí)的氣溫是多少?

(3)什么時(shí)候氣溫最高,最高時(shí)多少?什么時(shí)候氣溫最低,最低時(shí)多少?

(4)什么時(shí)候氣溫是氣溫是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小新的身高是1.7m,他的影子長為5.1m,同一時(shí)刻水塔的影長是42m,則水塔的高度是m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=x2﹣2x+kx軸交于AB兩點(diǎn),與y軸交于點(diǎn)C0﹣3).[2、圖3為解答備用圖]

1k= ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為

2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;

3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由;

4)在拋物線y=x2﹣2x+k上求點(diǎn)Q,使BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,作OAB,其中三個(gè)頂點(diǎn)分別是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x,y均為整數(shù)),則所作OAB為直角三角形的概率是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

(1)以A點(diǎn)為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△AB1C1,畫出△AB1C1

(2)作出△ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的△A2B2C2

(3)作出點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)P.若點(diǎn)P向右平移x(x取整數(shù))個(gè)單位長度后落在△A2B2C2的內(nèi)部,請(qǐng)直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形的上底為+2-10,下底為3-5-80,高為40.(3)

(1)用式子表示圖中陰影部分的面積;

(2)當(dāng)=10時(shí),求陰影部分面積的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案