【題目】在如圖所示的方格紙中.
(1)作出△ABC關(guān)于MN對稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經(jīng)過怎樣的平移變換得到的?
(3)若點(diǎn)A在直角坐標(biāo)系中的坐標(biāo)為(﹣1,3),試寫出A1、B1、C2坐標(biāo).
【答案】解:(1)如圖所示:△A1B1C1 , 即為所求;
(2)△A2B2C2是由△A1B1C1向右平移6個(gè)單位,再向下平移2個(gè)單位(或向下平移2個(gè)單位,再向右平移6個(gè)單位);
(3)如圖所示:A1(﹣1,﹣3),B1(﹣5,﹣1)C2(4,﹣3).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于MN的對稱點(diǎn)A1、B1、C1的位置,然后順次連接即可;
(2)根據(jù)平移的性質(zhì)結(jié)合圖形解答;
(3)利用已知A點(diǎn)坐標(biāo)進(jìn)而建立坐標(biāo)系,進(jìn)而求出各點(diǎn)坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程5x2-4x-1=0的二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別為( )
A. 5,4B. 5,-4C. 5,-1D. 5x2,4x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂練習(xí)中,王莉同學(xué)做了如下4道因式分解題,你認(rèn)為王莉做得不夠完整的一道是( )
A. x3-x=x(x2-1)
B. x2+2xy+y2=(x+y)2
C. x2y-xy2=xy(x-y)
D. ab2-6ab+9a=a(b-3)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】:
如圖1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE//AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,求∠APC的度數(shù);
(2)【問題遷移】:
如圖2,AB//CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)【問題應(yīng)用】:
在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了“綠色出行”,減少霧霾,家住番禺在廣州中心城區(qū)上班的王經(jīng)理,上班出行由自駕車改為乘坐地鐵出行,已知王經(jīng)理家距上班地點(diǎn)21千米,他用地鐵方式平均每小時(shí)出行的路程,比他用自駕車平均每小時(shí)行駛的路程的2倍還多5千米,他從家出發(fā)到達(dá)上班地點(diǎn),地鐵出行所用時(shí)間是自駕車方式所用時(shí)間的 . 求王經(jīng)理地鐵出行方式上班的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】無論x,y為何值,x2+y2-2x+12y+40的值都是( )
A. 正數(shù) B. 負(fù)數(shù) C. 0 D. 不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com